fna-workbench

fna-workbench Git Source Tree


Root/src/Content/LzxDecoder.cs

#region License
/* LzxDecoder.cs - C# port of libmsport's lzxd.c
 * Copyright 2003-2004 Stuart Caie
 * Copyright 2011 Ali Scissons
 *
 * Released under a dual MSPL/LGPL license.
 * See lzxdecoder.LICENSE for details.
 */
#endregion
 
#region Using Statements
using System;
#endregion
 
namespace Microsoft.Xna.Framework.Content
{
    using System.IO;
     
    class LzxDecoder
    {
        public static uint[] position_base = null;
        public static byte[] extra_bits = null;
         
        private LzxState m_state;
         
        public LzxDecoder (int window)
        {
            uint wndsize = (uint)(1 << window);
            int posn_slots;
             
            // Setup proper exception.
            if(window < 15 || window > 21) throw new UnsupportedWindowSizeRange();
             
            // Let's initialize our state.
            m_state = new LzxState();
            m_state.actual_size = 0;
            m_state.window = new byte[wndsize];
            for(int i = 0; i < wndsize; i++) m_state.window[i] = 0xDC;
            m_state.actual_size = wndsize;
            m_state.window_size = wndsize;
            m_state.window_posn = 0;
             
            // Initialize static tables.
            if(extra_bits == null)
            {
                extra_bits = new byte[52];
                for(int i = 0, j = 0; i <= 50; i += 2)
                {
                    extra_bits[i] = extra_bits[i+1] = (byte)j;
                    if ((i != 0) && (j < 17)) j++;
                }
            }
            if(position_base == null)
            {
                position_base = new uint[51];
                for(int i = 0, j = 0; i <= 50; i++)
                {
                    position_base[i] = (uint)j;
                    j += 1 << extra_bits[i];
                }
            }
             
            // Calculate required position slots.
            if(window == 20) posn_slots = 42;
            else if(window == 21) posn_slots = 50;
            else posn_slots = window << 1;
             
            m_state.R0 = m_state.R1 = m_state.R2 = 1;
            m_state.main_elements = (ushort)(LzxConstants.NUM_CHARS + (posn_slots << 3));
            m_state.header_read = 0;
            m_state.frames_read = 0;
            m_state.block_remaining = 0;
            m_state.block_type = LzxConstants.BLOCKTYPE.INVALID;
            m_state.intel_curpos = 0;
            m_state.intel_started = 0;
             
            m_state.PRETREE_table = new ushort[(1 << LzxConstants.PRETREE_TABLEBITS) + (LzxConstants.PRETREE_MAXSYMBOLS << 1)];
            m_state.PRETREE_len = new byte[LzxConstants.PRETREE_MAXSYMBOLS + LzxConstants.LENTABLE_SAFETY];
            m_state.MAINTREE_table = new ushort[(1 << LzxConstants.MAINTREE_TABLEBITS) + (LzxConstants.MAINTREE_MAXSYMBOLS << 1)];
            m_state.MAINTREE_len = new byte[LzxConstants.MAINTREE_MAXSYMBOLS + LzxConstants.LENTABLE_SAFETY];
            m_state.LENGTH_table = new ushort[(1 << LzxConstants.LENGTH_TABLEBITS) + (LzxConstants.LENGTH_MAXSYMBOLS << 1)];
            m_state.LENGTH_len = new byte[LzxConstants.LENGTH_MAXSYMBOLS + LzxConstants.LENTABLE_SAFETY];
            m_state.ALIGNED_table = new ushort[(1 << LzxConstants.ALIGNED_TABLEBITS) + (LzxConstants.ALIGNED_MAXSYMBOLS << 1)];
            m_state.ALIGNED_len = new byte[LzxConstants.ALIGNED_MAXSYMBOLS + LzxConstants.LENTABLE_SAFETY];
 
            // Initialize tables to 0 (because deltas will be applied to them).
            for(int i = 0; i < LzxConstants.MAINTREE_MAXSYMBOLS; i++) m_state.MAINTREE_len[i] = 0;
            for(int i = 0; i < LzxConstants.LENGTH_MAXSYMBOLS; i++) m_state.LENGTH_len[i] = 0;
        }
         
        public int Decompress(Stream inData, int inLen, Stream outData, int outLen)
        {
            BitBuffer bitbuf = new BitBuffer(inData);
            long startpos = inData.Position;
            long endpos = inData.Position + inLen;
             
            byte[] window = m_state.window;
             
            uint window_posn = m_state.window_posn;
            uint window_size = m_state.window_size;
            uint R0 = m_state.R0;
            uint R1 = m_state.R1;
            uint R2 = m_state.R2;
            uint i, j;
             
            int togo = outLen, this_run, main_element, match_length, match_offset, length_footer, extra, verbatim_bits;
            int rundest, runsrc, copy_length, aligned_bits;
             
            bitbuf.InitBitStream();
             
            // Read header if necessary.
            if(m_state.header_read == 0)
            {
                uint intel = bitbuf.ReadBits(1);
                if(intel != 0)
                {
                    // Read the filesize.
                    i = bitbuf.ReadBits(16); j = bitbuf.ReadBits(16);
                    m_state.intel_filesize = (int)((i << 16) | j);
                }
                m_state.header_read = 1;
            }
             
            // Main decoding loop.
            while(togo > 0)
            {
                // last block finished, new block expected.
                if(m_state.block_remaining == 0)
                {
                    // TODO may screw something up here
                    if(m_state.block_type == LzxConstants.BLOCKTYPE.UNCOMPRESSED) {
                        if((m_state.block_length & 1) == 1) inData.ReadByte(); /* realign bitstream to word */
                        bitbuf.InitBitStream();
                    }
                     
                    m_state.block_type = (LzxConstants.BLOCKTYPE)bitbuf.ReadBits(3);;
                    i = bitbuf.ReadBits(16);
                    j = bitbuf.ReadBits(8);
                    m_state.block_remaining = m_state.block_length = (uint)((i << 8) | j);
                     
                    switch(m_state.block_type)
                    {
                    case LzxConstants.BLOCKTYPE.ALIGNED:
                        for(i = 0, j = 0; i < 8; i++) { j = bitbuf.ReadBits(3); m_state.ALIGNED_len[i] = (byte)j; }
                        MakeDecodeTable(LzxConstants.ALIGNED_MAXSYMBOLS, LzxConstants.ALIGNED_TABLEBITS,
                                        m_state.ALIGNED_len, m_state.ALIGNED_table);
                        // Rest of aligned header is same as verbatim
                        goto case LzxConstants.BLOCKTYPE.VERBATIM;
                         
                    case LzxConstants.BLOCKTYPE.VERBATIM:
                        ReadLengths(m_state.MAINTREE_len, 0, 256, bitbuf);
                        ReadLengths(m_state.MAINTREE_len, 256, m_state.main_elements, bitbuf);
                        MakeDecodeTable(LzxConstants.MAINTREE_MAXSYMBOLS, LzxConstants.MAINTREE_TABLEBITS,
                                        m_state.MAINTREE_len, m_state.MAINTREE_table);
                        if(m_state.MAINTREE_len[0xE8] != 0) m_state.intel_started = 1;
                         
                        ReadLengths(m_state.LENGTH_len, 0, LzxConstants.NUM_SECONDARY_LENGTHS, bitbuf);
                        MakeDecodeTable(LzxConstants.LENGTH_MAXSYMBOLS, LzxConstants.LENGTH_TABLEBITS,
                                        m_state.LENGTH_len, m_state.LENGTH_table);
                        break;
                         
                    case LzxConstants.BLOCKTYPE.UNCOMPRESSED:
                        m_state.intel_started = 1; // Because we can't assume otherwise.
                        bitbuf.EnsureBits(16); // Get up to 16 pad bits into the buffer.
                        if(bitbuf.GetBitsLeft() > 16) inData.Seek(-2, SeekOrigin.Current); /* and align the bitstream! */
                        byte hi, mh, ml, lo;
                        lo = (byte)inData.ReadByte(); ml = (byte)inData.ReadByte(); mh = (byte)inData.ReadByte(); hi = (byte)inData.ReadByte();
                        R0 = (uint)(lo | ml << 8 | mh << 16 | hi << 24);
                        lo = (byte)inData.ReadByte(); ml = (byte)inData.ReadByte(); mh = (byte)inData.ReadByte(); hi = (byte)inData.ReadByte();
                        R1 = (uint)(lo | ml << 8 | mh << 16 | hi << 24);
                        lo = (byte)inData.ReadByte(); ml = (byte)inData.ReadByte(); mh = (byte)inData.ReadByte(); hi = (byte)inData.ReadByte();
                        R2 = (uint)(lo | ml << 8 | mh << 16 | hi << 24);
                        break;
                         
                    default:
                        return -1; // TODO throw proper exception
                    }
                }
                 
                // Buffer exhaustion check.
                if(inData.Position > (startpos + inLen))
                {
                    /* It's possible to have a file where the next run is less than
                     * 16 bits in size. In this case, the READ_HUFFSYM() macro used
                     * in building the tables will exhaust the buffer, so we should
                     * allow for this, but not allow those accidentally read bits to
                     * be used (so we check that there are at least 16 bits
                     * remaining - in this boundary case they aren't really part of
                     * the compressed data).
                     */
 
                    if(inData.Position > (startpos+inLen+2) || bitbuf.GetBitsLeft() < 16) return -1; //TODO throw proper exception
                }
                 
                while((this_run = (int)m_state.block_remaining) > 0 && togo > 0)
                {
                    if(this_run > togo) this_run = togo;
                    togo -= this_run;
                    m_state.block_remaining -= (uint)this_run;
                     
                    // Apply 2^x-1 mask.
                    window_posn &= window_size - 1;
                    // Runs can't straddle the window wraparound.
                    if((window_posn + this_run) > window_size)
                        return -1; // TODO: throw proper exception
                     
                    switch(m_state.block_type)
                    {
                    case LzxConstants.BLOCKTYPE.VERBATIM:
                        while(this_run > 0)
                        {
                            main_element = (int)ReadHuffSym(m_state.MAINTREE_table, m_state.MAINTREE_len,
                                                       LzxConstants.MAINTREE_MAXSYMBOLS, LzxConstants.MAINTREE_TABLEBITS,
                                                       bitbuf);
                            if(main_element < LzxConstants.NUM_CHARS)
                            {
                                // Literal: 0 to NUM_CHARS-1.
                                window[window_posn++] = (byte)main_element;
                                this_run--;
                            }
                            else
                            {
                                // Match: NUM_CHARS + ((slot<<3) | length_header (3 bits))
                                main_element -= LzxConstants.NUM_CHARS;
                                 
                                match_length = main_element & LzxConstants.NUM_PRIMARY_LENGTHS;
                                if(match_length == LzxConstants.NUM_PRIMARY_LENGTHS)
                                {
                                    length_footer = (int)ReadHuffSym(m_state.LENGTH_table, m_state.LENGTH_len,
                                                                LzxConstants.LENGTH_MAXSYMBOLS, LzxConstants.LENGTH_TABLEBITS,
                                                                bitbuf);
                                    match_length += length_footer;
                                }
                                match_length += LzxConstants.MIN_MATCH;
                                 
                                match_offset = main_element >> 3;
                                 
                                if(match_offset > 2)
                                {
                                    // Not repeated offset.
                                    if(match_offset != 3)
                                    {
                                        extra = extra_bits[match_offset];
                                        verbatim_bits = (int)bitbuf.ReadBits((byte)extra);
                                        match_offset = (int)position_base[match_offset] - 2 + verbatim_bits;
                                    }
                                    else
                                    {
                                        match_offset = 1;
                                    }
                                     
                                    // Update repeated offset LRU queue.
                                    R2 = R1; R1 = R0; R0 = (uint)match_offset;
                                }
                                else if(match_offset == 0)
                                {
                                    match_offset = (int)R0;
                                }
                                else if(match_offset == 1)
                                {
                                    match_offset = (int)R1;
                                    R1 = R0; R0 = (uint)match_offset;
                                }
                                else // match_offset == 2
                                {
                                    match_offset = (int)R2;
                                    R2 = R0; R0 = (uint)match_offset;
                                }
                                 
                                rundest = (int)window_posn;
                                this_run -= match_length;
                                 
                                // Copy any wrapped around source data
                                if(window_posn >= match_offset)
                                {
                                    // No wrap
                                    runsrc = rundest - match_offset;
                                }
                                else
                                {
                                    runsrc = rundest + ((int)window_size - match_offset);
                                    copy_length = match_offset - (int)window_posn;
                                    if(copy_length < match_length)
                                    {
                                        match_length -= copy_length;
                                        window_posn += (uint)copy_length;
                                        while(copy_length-- > 0) window[rundest++] = window[runsrc++];
                                        runsrc = 0;
                                    }
                                }
                                window_posn += (uint)match_length;
                                 
                                // Copy match data - no worries about destination wraps
                                while(match_length-- > 0) window[rundest++] = window[runsrc++];
                            }
                        }
                        break;
                     
                    case LzxConstants.BLOCKTYPE.ALIGNED:
                        while(this_run > 0)
                        {
                            main_element = (int)ReadHuffSym(m_state.MAINTREE_table, m_state.MAINTREE_len,
                                                                      LzxConstants.MAINTREE_MAXSYMBOLS, LzxConstants.MAINTREE_TABLEBITS,
                                                                      bitbuf);
                             
                            if(main_element < LzxConstants.NUM_CHARS)
                            {
                                // Literal 0 to NUM_CHARS-1
                                window[window_posn++] = (byte)main_element;
                                this_run -= 1;
                            }
                            else
                            {
                                // Match: NUM_CHARS + ((slot<<3) | length_header (3 bits))
                                main_element -= LzxConstants.NUM_CHARS;
                                 
                                match_length = main_element & LzxConstants.NUM_PRIMARY_LENGTHS;
                                if(match_length == LzxConstants.NUM_PRIMARY_LENGTHS)
                                {
                                    length_footer = (int)ReadHuffSym(m_state.LENGTH_table, m_state.LENGTH_len,
                                                                     LzxConstants.LENGTH_MAXSYMBOLS, LzxConstants.LENGTH_TABLEBITS,
                                                                     bitbuf);
                                    match_length += length_footer;
                                }
                                match_length += LzxConstants.MIN_MATCH;
                                 
                                match_offset = main_element >> 3;
                                 
                                if(match_offset > 2)
                                {
                                    // Not repeated offset.
                                    extra = extra_bits[match_offset];
                                    match_offset = (int)position_base[match_offset] - 2;
                                    if(extra > 3)
                                    {
                                        // Verbatim and aligned bits.
                                        extra -= 3;
                                        verbatim_bits = (int)bitbuf.ReadBits((byte)extra);
                                        match_offset += (verbatim_bits << 3);
                                        aligned_bits = (int)ReadHuffSym(m_state.ALIGNED_table, m_state.ALIGNED_len,
                                                                   LzxConstants.ALIGNED_MAXSYMBOLS, LzxConstants.ALIGNED_TABLEBITS,
                                                                   bitbuf);
                                        match_offset += aligned_bits;
                                    }
                                    else if(extra == 3)
                                    {
                                        // Aligned bits only.
                                        aligned_bits = (int)ReadHuffSym(m_state.ALIGNED_table, m_state.ALIGNED_len,
                                                                   LzxConstants.ALIGNED_MAXSYMBOLS, LzxConstants.ALIGNED_TABLEBITS,
                                                                   bitbuf);
                                        match_offset += aligned_bits;
                                    }
                                    else if (extra > 0) // extra==1, extra==2
                                    {
                                        // Verbatim bits only.
                                        verbatim_bits = (int)bitbuf.ReadBits((byte)extra);
                                        match_offset += verbatim_bits;
                                    }
                                    else // extra == 0
                                    {
                                        // ???
                                        match_offset = 1;
                                    }
                                     
                                    // Update repeated offset LRU queue.
                                    R2 = R1; R1 = R0; R0 = (uint)match_offset;
                                }
                                else if( match_offset == 0)
                                {
                                    match_offset = (int)R0;
                                }
                                else if(match_offset == 1)
                                {
                                    match_offset = (int)R1;
                                    R1 = R0; R0 = (uint)match_offset;
                                }
                                else // match_offset == 2
                                {
                                    match_offset = (int)R2;
                                    R2 = R0; R0 = (uint)match_offset;
                                }
                                 
                                rundest = (int)window_posn;
                                this_run -= match_length;
                                 
                                // Copy any wrapped around source data
                                if(window_posn >= match_offset)
                                {
                                    // No wrap
                                    runsrc = rundest - match_offset;
                                }
                                else
                                {
                                    runsrc = rundest + ((int)window_size - match_offset);
                                    copy_length = match_offset - (int)window_posn;
                                    if(copy_length < match_length)
                                    {
                                        match_length -= copy_length;
                                        window_posn += (uint)copy_length;
                                        while(copy_length-- > 0) window[rundest++] = window[runsrc++];
                                        runsrc = 0;
                                    }
                                }
                                window_posn += (uint)match_length;
                                 
                                // Copy match data - no worries about destination wraps.
                                while(match_length-- > 0) window[rundest++] = window[runsrc++];
                            }
                        }
                        break;
                         
                    case LzxConstants.BLOCKTYPE.UNCOMPRESSED:
                        if((inData.Position + this_run) > endpos) return -1; // TODO: Throw proper exception
                        byte[] temp_buffer = new byte[this_run];
                        inData.Read(temp_buffer, 0, this_run);
                        temp_buffer.CopyTo(window, (int)window_posn);
                        window_posn += (uint)this_run;
                        break;
                         
                    default:
                        return -1; // TODO: Throw proper exception
                    }
                }
            }
             
            if(togo != 0) return -1; // TODO: Throw proper exception
            int start_window_pos = (int)window_posn;
            if(start_window_pos == 0) start_window_pos = (int)window_size;
            start_window_pos -= outLen;
            outData.Write(window, start_window_pos, outLen);
             
            m_state.window_posn = window_posn;
            m_state.R0 = R0;
            m_state.R1 = R1;
            m_state.R2 = R2;
             
            // TODO: Finish intel E8 decoding.
            // Intel E8 decoding.
            if((m_state.frames_read++ < 32768) && m_state.intel_filesize != 0)
            {
                if(outLen <= 6 || m_state.intel_started == 0)
                {
                    m_state.intel_curpos += outLen;
                }
                else
                {
                    int dataend = outLen - 10;
                    uint curpos = (uint)m_state.intel_curpos;
                     
                    m_state.intel_curpos = (int)curpos + outLen;
                     
                    while(outData.Position < dataend)
                    {
                        if(outData.ReadByte() != 0xE8) { curpos++; continue; }
                    }
                }
                return -1;
            }
            return 0;
        }
         
        // TODO: Make returns throw exceptions
        private int MakeDecodeTable(uint nsyms, uint nbits, byte[] length, ushort[] table)
        {
            ushort sym;
            uint leaf;
            byte bit_num = 1;
            uint fill;
            uint pos        = 0; // The current position in the decode table.
            uint table_mask     = (uint)(1 << (int)nbits);
            uint bit_mask       = table_mask >> 1; // Don't do 0 length codes.
            uint next_symbol    = bit_mask; // Base of allocation for long codes.
             
            // Fill entries for codes short enough for a direct mapping.
            while (bit_num <= nbits )
            {
                for(sym = 0; sym < nsyms; sym++)
                {
                    if(length[sym] == bit_num)
                    {
                        leaf = pos;
                         
                        if ((pos += bit_mask) > table_mask)
                        {
                            return 1; // Table overrun
                        }
                         
                        /* Fill all possible lookups of this symbol with the
                         * symbol itself.
                         */
                        fill = bit_mask;
                        while(fill-- > 0) table[leaf++] = sym;
                    }
                }
                bit_mask >>= 1;
                bit_num++;
            }
             
            // If there are any codes longer than nbits
            if(pos != table_mask)
            {
                // Clear the remainder of the table.
                for(sym = (ushort)pos; sym < table_mask; sym++) table[sym] = 0;
                 
                // Give ourselves room for codes to grow by up to 16 more bits.
                pos <<= 16;
                table_mask <<= 16;
                bit_mask = 1 << 15;
                 
                while(bit_num <= 16)
                {
                    for(sym = 0; sym < nsyms; sym++)
                    {
                        if(length[sym] == bit_num)
                        {
                            leaf = pos >> 16;
                            for(fill = 0; fill < bit_num - nbits; fill++)
                            {
                                // if this path hasn't been taken yet, 'allocate' two entries.
                                if(table[leaf] == 0)
                                {
                                    table[(next_symbol << 1)] = 0;
                                    table[(next_symbol << 1) + 1] = 0;
                                    table[leaf] = (ushort)(next_symbol++);
                                }
                                // Follow the path and select either left or right for next bit.
                                leaf = (uint)(table[leaf] << 1);
                                if(((pos >> (int)(15-fill)) & 1) == 1) leaf++;
                            }
                            table[leaf] = sym;
                             
                            if((pos += bit_mask) > table_mask) return 1;
                        }
                    }
                    bit_mask >>= 1;
                    bit_num++;
                }
            }
             
            // full table?
            if(pos == table_mask) return 0;
             
            // Either erroneous table, or all elements are 0 - let's find out.
            for(sym = 0; sym < nsyms; sym++) if(length[sym] != 0) return 1;
            return 0;
        }
         
        // TODO:  Throw exceptions instead of returns
        private void ReadLengths(byte[] lens, uint first, uint last, BitBuffer bitbuf)
        {
            uint x, y;
            int z;
             
            // hufftbl pointer here?
             
            for(x = 0; x < 20; x++)
            {
                y = bitbuf.ReadBits(4);
                m_state.PRETREE_len[x] = (byte)y;
            }
            MakeDecodeTable(LzxConstants.PRETREE_MAXSYMBOLS, LzxConstants.PRETREE_TABLEBITS,
                            m_state.PRETREE_len, m_state.PRETREE_table);
             
            for(x = first; x < last;)
            {
                z = (int)ReadHuffSym(m_state.PRETREE_table, m_state.PRETREE_len,
                                LzxConstants.PRETREE_MAXSYMBOLS, LzxConstants.PRETREE_TABLEBITS, bitbuf);
                if(z == 17)
                {
                    y = bitbuf.ReadBits(4); y += 4;
                    while(y-- != 0) lens[x++] = 0;
                }
                else if(z == 18)
                {
                    y = bitbuf.ReadBits(5); y += 20;
                    while(y-- != 0) lens[x++] = 0;
                }
                else if(z == 19)
                {
                    y = bitbuf.ReadBits(1); y += 4;
                    z = (int)ReadHuffSym(m_state.PRETREE_table, m_state.PRETREE_len,
                                LzxConstants.PRETREE_MAXSYMBOLS, LzxConstants.PRETREE_TABLEBITS, bitbuf);
                    z = lens[x] - z; if(z < 0) z += 17;
                    while(y-- != 0) lens[x++] = (byte)z;
                }
                else
                {
                    z = lens[x] - z; if(z < 0) z += 17;
                    lens[x++] = (byte)z;
                }
            }
        }
         
        private uint ReadHuffSym(ushort[] table, byte[] lengths, uint nsyms, uint nbits, BitBuffer bitbuf)
        {
            uint i, j;
            bitbuf.EnsureBits(16);
            if((i = table[bitbuf.PeekBits((byte)nbits)]) >= nsyms)
            {
                j = (uint)(1 << (int)((sizeof(uint)*8) - nbits));
                do
                {
                    j >>= 1; i <<= 1; i |= (bitbuf.GetBuffer() & j) != 0 ? (uint)1 : 0;
                    if(j == 0) return 0; // TODO: throw proper exception
                } while((i = table[i]) >= nsyms);
            }
            j = lengths[i];
            bitbuf.RemoveBits((byte)j);
             
            return i;
        }
         
        #region Our BitBuffer Class
        private class BitBuffer
        {
            uint buffer;
            byte bitsleft;
            Stream byteStream;
             
            public BitBuffer(Stream stream)
            {
                byteStream = stream;
                InitBitStream();
            }
             
            public void InitBitStream()
            {
                buffer = 0;
                bitsleft = 0;
            }
             
            public void EnsureBits(byte bits)
            {
                while(bitsleft < bits) {
                    int lo = (byte)byteStream.ReadByte();
                    int hi = (byte)byteStream.ReadByte();
                    buffer |= (uint)(((hi << 8) | lo) << (sizeof(uint)*8 - 16 - bitsleft));
                    bitsleft += 16;
                }
            }
             
            public uint PeekBits(byte bits)
            {
                return (buffer >> ((sizeof(uint)*8) - bits));
            }
             
            public void RemoveBits(byte bits)
            {
                buffer <<= bits;
                bitsleft -= bits;
            }
             
            public uint ReadBits(byte bits)
            {
                uint ret = 0;
                 
                if(bits > 0)
                {
                    EnsureBits(bits);
                    ret = PeekBits(bits);
                    RemoveBits(bits);
                }
                 
                return ret;
            }
             
            public uint GetBuffer()
            {
                return buffer;
            }
             
            public byte GetBitsLeft()
            {
                return bitsleft;
            }
        }
        #endregion
         
        struct LzxState {
            public uint         R0, R1, R2; // For the LRU offset system
            public ushort           main_elements; // Number of main tree elements
            public int          header_read; // Have we started decoding at all yet?
            public LzxConstants.BLOCKTYPE   block_type; // Type of this block
            public uint         block_length; // Uncompressed length of this block
            public uint         block_remaining; // Uncompressed bytes still left to decode
            public uint         frames_read; // The number of CFDATA blocks processed
            public int          intel_filesize; // Magic header value used for transform
            public int          intel_curpos; // Current offset in transform space
            public int          intel_started; // Have we seen any translateable data yet?
             
            public ushort[]     PRETREE_table;
            public byte[]       PRETREE_len;
            public ushort[]     MAINTREE_table;
            public byte[]       MAINTREE_len;
            public ushort[]     LENGTH_table;
            public byte[]       LENGTH_len;
            public ushort[]     ALIGNED_table;
            public byte[]       ALIGNED_len;
             
            /* NEEDED MEMBERS
             * CAB actualsize
             * CAB window
             * CAB window_size
             * CAB window_posn
             */
            public uint     actual_size;
            public byte[]   window;
            public uint     window_size;
            public uint     window_posn;
        }
    }
     
    // CONSTANTS
    struct LzxConstants {
        public const ushort MIN_MATCH =             2;
        public const ushort MAX_MATCH =             257;
        public const ushort NUM_CHARS =             256;
        public enum BLOCKTYPE {
            INVALID = 0,
            VERBATIM = 1,
            ALIGNED = 2,
            UNCOMPRESSED = 3
        }
        public const ushort PRETREE_NUM_ELEMENTS =  20;
        public const ushort ALIGNED_NUM_ELEMENTS =  8;
        public const ushort NUM_PRIMARY_LENGTHS =   7;
        public const ushort NUM_SECONDARY_LENGTHS = 249;
         
        public const ushort PRETREE_MAXSYMBOLS =    PRETREE_NUM_ELEMENTS;
        public const ushort PRETREE_TABLEBITS =     6;
        public const ushort MAINTREE_MAXSYMBOLS =   NUM_CHARS + 50*8;
        public const ushort MAINTREE_TABLEBITS =    12;
        public const ushort LENGTH_MAXSYMBOLS =     NUM_SECONDARY_LENGTHS + 1;
        public const ushort LENGTH_TABLEBITS =      12;
        public const ushort ALIGNED_MAXSYMBOLS =    ALIGNED_NUM_ELEMENTS;
        public const ushort ALIGNED_TABLEBITS =     7;
                 
        public const ushort LENTABLE_SAFETY =       64;
    }
     
    // EXCEPTIONS
    class UnsupportedWindowSizeRange : Exception
    {
    }
}

Archive Download this file

Branches

Number of commits:
Page rendered in 0.10201s using 11 queries.