fna-workbench

fna-workbench Git Source Tree


Root/src/Ray.cs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#region License
/* FNA - XNA4 Reimplementation for Desktop Platforms
 * Copyright 2009-2016 Ethan Lee and the MonoGame Team
 *
 * Released under the Microsoft Public License.
 * See LICENSE for details.
 */
 
/* Derived from code by the Mono.Xna Team (Copyright 2006).
 * Released under the MIT License. See monoxna.LICENSE for details.
 */
#endregion
 
#region Using Statements
using System;
using System.ComponentModel;
using System.Diagnostics;
 
using Microsoft.Xna.Framework.Design;
#endregion
 
namespace Microsoft.Xna.Framework
{
    [Serializable]
    [TypeConverter(typeof(RayConverter))]
    [DebuggerDisplay("{DebugDisplayString,nq}")]
    public struct Ray : IEquatable<Ray>
    {
        #region Internal Properties
 
        internal string DebugDisplayString
        {
            get
            {
                return string.Concat(
                    "Pos( ", Position.DebugDisplayString, " ) \r\n",
                    "Dir( ", Direction.DebugDisplayString, " )"
                );
            }
        }
 
        #endregion
 
        #region Public Fields
 
        public Vector3 Position;
        public Vector3 Direction;
 
        #endregion
 
 
        #region Public Constructors
 
        public Ray(Vector3 position, Vector3 direction)
        {
            Position = position;
            Direction = direction;
        }
 
        #endregion
 
 
        #region Public Methods
 
        public override bool Equals(object obj)
        {
            return (obj is Ray) && Equals((Ray) obj);
        }
 
 
        public bool Equals(Ray other)
        {
            return (    this.Position.Equals(other.Position) &&
                    this.Direction.Equals(other.Direction)  );
        }
 
 
        public override int GetHashCode()
        {
            return Position.GetHashCode() ^ Direction.GetHashCode();
        }
 
        public float? Intersects(BoundingBox box)
        {
            float? tMin = null, tMax = null;
 
            if (MathHelper.WithinEpsilon(Direction.X, 0.0f))
            {
                if (Position.X < box.Min.X || Position.X > box.Max.X)
                {
                    return null;
                }
            }
            else
            {
                tMin = (box.Min.X - Position.X) / Direction.X;
                tMax = (box.Max.X - Position.X) / Direction.X;
 
                if (tMin > tMax)
                {
                    float? temp = tMin;
                    tMin = tMax;
                    tMax = temp;
                }
            }
 
            if (MathHelper.WithinEpsilon(Direction.Y, 0.0f))
            {
                if (Position.Y < box.Min.Y || Position.Y > box.Max.Y)
                {
                    return null;
                }
            }
            else
            {
                float tMinY = (box.Min.Y - Position.Y) / Direction.Y;
                float tMaxY = (box.Max.Y - Position.Y) / Direction.Y;
 
                if (tMinY > tMaxY)
                {
                    float temp = tMinY;
                    tMinY = tMaxY;
                    tMaxY = temp;
                }
 
                if (    (tMin.HasValue && tMin > tMaxY) ||
                    (tMax.HasValue && tMinY > tMax) )
                {
                    return null;
                }
 
                if (!tMin.HasValue || tMinY > tMin) tMin = tMinY;
                if (!tMax.HasValue || tMaxY < tMax) tMax = tMaxY;
            }
 
            if (MathHelper.WithinEpsilon(Direction.Z, 0.0f))
            {
                if (Position.Z < box.Min.Z || Position.Z > box.Max.Z)
                {
                    return null;
                }
            }
            else
            {
                float tMinZ = (box.Min.Z - Position.Z) / Direction.Z;
                float tMaxZ = (box.Max.Z - Position.Z) / Direction.Z;
 
                if (tMinZ > tMaxZ)
                {
                    float temp = tMinZ;
                    tMinZ = tMaxZ;
                    tMaxZ = temp;
                }
 
                if (    (tMin.HasValue && tMin > tMaxZ) ||
                    (tMax.HasValue && tMinZ > tMax) )
                {
                    return null;
                }
 
                if (!tMin.HasValue || tMinZ > tMin) tMin = tMinZ;
                if (!tMax.HasValue || tMaxZ < tMax) tMax = tMaxZ;
            }
 
            /* Having a positive tMin and a negative tMax means the ray is inside the
             * box we expect the intesection distance to be 0 in that case.
             */
            if ((tMin.HasValue && tMin < 0) && tMax > 0) return 0;
 
            /* A negative tMin means that the intersection point is behind the ray's
             * origin. We discard these as not hitting the AABB.
             */
            if (tMin < 0) return null;
 
            return tMin;
        }
 
 
        public void Intersects(ref BoundingBox box, out float? result)
        {
            result = Intersects(box);
        }
 
        public float? Intersects(BoundingSphere sphere)
        {
            float? result;
            Intersects(ref sphere, out result);
            return result;
        }
 
        public float? Intersects(Plane plane)
        {
            float? result;
            Intersects(ref plane, out result);
            return result;
        }
 
        public float? Intersects(BoundingFrustum frustum)
        {
            float? result;
            frustum.Intersects(ref this, out result);
            return result;
        }
 
        public void Intersects(ref Plane plane, out float? result)
        {
            float den = Vector3.Dot(Direction, plane.Normal);
            if (Math.Abs(den) < 0.00001f)
            {
                result = null;
                return;
            }
 
            result = (-plane.D - Vector3.Dot(plane.Normal, Position)) / den;
 
            if (result < 0.0f)
            {
                if (result < -0.00001f)
                {
                    result = null;
                    return;
                }
 
                result = 0.0f;
            }
        }
 
        public void Intersects(ref BoundingSphere sphere, out float? result)
        {
            // Find the vector between where the ray starts the the sphere's center.
            Vector3 difference = sphere.Center - this.Position;
 
            float differenceLengthSquared = difference.LengthSquared();
            float sphereRadiusSquared = sphere.Radius * sphere.Radius;
 
            float distanceAlongRay;
 
            /* If the distance between the ray start and the sphere's center is less than
             * the radius of the sphere, it means we've intersected. Checking the
             * LengthSquared is faster.
             */
            if (differenceLengthSquared < sphereRadiusSquared)
            {
                result = 0.0f;
                return;
            }
 
            Vector3.Dot(ref this.Direction, ref difference, out distanceAlongRay);
            // If the ray is pointing away from the sphere then we don't ever intersect.
            if (distanceAlongRay < 0)
            {
                result = null;
                return;
            }
 
            /* Next we kinda use Pythagoras to check if we are within the bounds of the
             * sphere.
             * if x = radius of sphere
             * if y = distance between ray position and sphere centre
             * if z = the distance we've travelled along the ray
             * if x^2 + z^2 - y^2 < 0, we do not intersect
             */
            float dist = (
                sphereRadiusSquared +
                (distanceAlongRay * distanceAlongRay) -
                differenceLengthSquared
            );
 
            result = (dist < 0) ? null : distanceAlongRay - (float?) Math.Sqrt(dist);
        }
 
        #endregion
 
        #region Public Static Methods
 
        public static bool operator !=(Ray a, Ray b)
        {
            return !a.Equals(b);
        }
 
 
        public static bool operator ==(Ray a, Ray b)
        {
            return a.Equals(b);
        }
 
 
        public override string ToString()
        {
            return (
                "{{Position:" + Position.ToString() +
                " Direction:" + Direction.ToString() +
                "}}"
            );
        }
 
        #endregion
    }
}

Archive Download this file

Branches

Number of commits:
Page rendered in 0.23569s using 11 queries.