fna-workbench

fna-workbench Git Source Tree


Root/src/Curve.cs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
#region License
/* FNA - XNA4 Reimplementation for Desktop Platforms
 * Copyright 2009-2016 Ethan Lee and the MonoGame Team
 *
 * Released under the Microsoft Public License.
 * See LICENSE for details.
 */
 
/* Derived from code by the Mono.Xna Team (Copyright 2006).
 * Released under the MIT License. See monoxna.LICENSE for details.
 */
#endregion
 
#region Using Statements
using System;
#endregion
 
namespace Microsoft.Xna.Framework
{
    /// <summary>
    /// Contains a collection of <see cref="CurveKey"/> points in 2D space and provides methods for evaluating features of the curve they define.
    /// </summary>
    [Serializable]
    public class Curve
    {
        #region Public Properties
 
        /// <summary>
        /// Returns <c>true</c> if this curve is constant (has zero or one points); <c>false</c> otherwise.
        /// </summary>
        public bool IsConstant
        {
            get
            {
                return Keys.Count <= 1;
            }
        }
 
        /// <summary>
        /// The collection of curve keys.
        /// </summary>
        public CurveKeyCollection Keys
        {
            get;
            private set;
        }
 
        /// <summary>
        /// Defines how to handle weighting values that are greater than the last control point in the curve.
        /// </summary>
        public CurveLoopType PostLoop
        {
            get;
            set;
        }
 
        /// <summary>
        /// Defines how to handle weighting values that are less than the first control point in the curve.
        /// </summary>
        public CurveLoopType PreLoop
        {
            get;
            set;
        }
 
        #endregion
 
        #region Public Constructors
 
        /// <summary>
        /// Constructs a curve.
        /// </summary>
        public Curve()
        {
            Keys = new CurveKeyCollection();
        }
 
        #endregion
 
        #region Private Constructors
 
        private Curve(CurveKeyCollection keys)
        {
            Keys = keys;
        }
 
        #endregion
 
        #region Public Methods
 
        /// <summary>
        /// Creates a copy of this curve.
        /// </summary>
        /// <returns>A copy of this curve.</returns>
        public Curve Clone()
        {
            Curve curve = new Curve(Keys.Clone());
            curve.PreLoop = PreLoop;
            curve.PostLoop = PostLoop;
            return curve;
        }
 
        /// <summary>
        /// Evaluate the value at a position of this <see cref="Curve"/>.
        /// </summary>
        /// <param name="position">The position on this <see cref="Curve"/>.</param>
        /// <returns>Value at the position on this <see cref="Curve"/>.</returns>
        public float Evaluate(float position)
        {
            if (Keys.Count == 0)
            {
                return 0.0f;
            }
            if (Keys.Count == 1)
            {
                return Keys[0].Value;
            }
 
            CurveKey first = Keys[0];
            CurveKey last = Keys[Keys.Count - 1];
 
            if (position < first.Position)
            {
                switch (this.PreLoop)
                {
                    case CurveLoopType.Constant:
                        return first.Value;
 
                    case CurveLoopType.Linear:
                        // Linear y = a*x +b with a tangent of last point.
                        return first.Value - first.TangentIn * (first.Position - position);
 
                    case CurveLoopType.Cycle:
                        // Start -> end / start -> end...
                        int cycle = GetNumberOfCycle(position);
                        float virtualPos = position - (cycle * (last.Position - first.Position));
                        return GetCurvePosition(virtualPos);
 
                    case CurveLoopType.CycleOffset:
                        /* Make the curve continue (with no step) so must up
                         * the curve each cycle of delta(value).
                         */
                        cycle = GetNumberOfCycle(position);
                        virtualPos = position - (cycle * (last.Position - first.Position));
                        return (GetCurvePosition(virtualPos) + cycle * (last.Value - first.Value));
 
                    case CurveLoopType.Oscillate:
                        /* Go back on curve from end and target start
                         * Start-> end / end -> start...
                         */
                        cycle = GetNumberOfCycle(position);
                         
                        if (0 == cycle % 2f)
                        {
                            virtualPos = position - (cycle * (last.Position - first.Position));
                        }
                        else
                        {
                            virtualPos = last.Position - position + first.Position + (cycle * (last.Position - first.Position));
                        }
                        return GetCurvePosition(virtualPos);
                }
            }
            else if (position > last.Position)
            {
                int cycle;
                switch (this.PostLoop)
                {
                    case CurveLoopType.Constant:
                        return last.Value;
 
                    case CurveLoopType.Linear:
                        // Linear y = a*x +b with a tangent of last point.
                        return last.Value + first.TangentOut * (position - last.Position);
 
                    case CurveLoopType.Cycle:
                        // Start -> end / start -> end...
                        cycle = GetNumberOfCycle(position);
                        float virtualPos = position - (cycle * (last.Position - first.Position));
                        return GetCurvePosition(virtualPos);
 
                    case CurveLoopType.CycleOffset:
                        /* Make the curve continue (with no step) so must up
                         * the curve each cycle of delta(value).
                         */
                        cycle = GetNumberOfCycle(position);
                        virtualPos = position - (cycle * (last.Position - first.Position));
                        return (GetCurvePosition(virtualPos) + cycle * (last.Value - first.Value));
 
                    case CurveLoopType.Oscillate:
                        /* Go back on curve from end and target start.
                         * Start-> end / end -> start...
                         */
                        cycle = GetNumberOfCycle(position);
                        virtualPos = position - (cycle * (last.Position - first.Position));
 
                        if (0 == cycle % 2f)
                        {
                            virtualPos = position - (cycle * (last.Position - first.Position));
                        }
                        else
                        {
                            virtualPos =
                                last.Position - position + first.Position +
                                (cycle * (last.Position - first.Position)
                            );
                        }
                        return GetCurvePosition(virtualPos);
                }
            }
 
            // In curve.
            return GetCurvePosition(position);
        }
 
        /// <summary>
        /// Computes tangents for all keys in the collection.
        /// </summary>
        /// <param name="tangentType">The tangent type for both in and out.</param>
        public void ComputeTangents(CurveTangent tangentType)
        {
            ComputeTangents(tangentType, tangentType);
        }
 
        /// <summary>
        /// Computes tangents for all keys in the collection.
        /// </summary>
        /// <param name="tangentInType">The tangent in-type. <see cref="CurveKey.TangentIn"/> for more details.</param>
        /// <param name="tangentOutType">The tangent out-type. <see cref="CurveKey.TangentOut"/> for more details.</param>
        public void ComputeTangents(CurveTangent tangentInType, CurveTangent tangentOutType)
        {
            for (int i = 0; i < Keys.Count; i += 1)
            {
                ComputeTangent(i, tangentInType, tangentOutType);
            }
        }
 
        /// <summary>
        /// Computes tangent for the specific key in the collection.
        /// </summary>
        /// <param name="keyIndex">The index of a key in the collection.</param>
        /// <param name="tangentType">The tangent type for both in and out.</param>
        public void ComputeTangent(int keyIndex, CurveTangent tangentType)
        {
            ComputeTangent(keyIndex, tangentType, tangentType);
        }
 
        /// <summary>
        /// Computes tangent for the specific key in the collection.
        /// </summary>
        /// <param name="keyIndex">The index of key in the collection.</param>
        /// <param name="tangentInType">The tangent in-type. <see cref="CurveKey.TangentIn"/> for more details.</param>
        /// <param name="tangentOutType">The tangent out-type. <see cref="CurveKey.TangentOut"/> for more details.</param>
        public void ComputeTangent(
            int keyIndex,
            CurveTangent tangentInType,
            CurveTangent tangentOutType
        ) {
 
            CurveKey key = Keys[keyIndex];
 
            float p0, p, p1;
            p0 = p = p1 = key.Position;
 
            float v0, v, v1;
            v0 = v = v1 = key.Value;
 
            if (keyIndex > 0)
            {
                p0 = Keys[keyIndex - 1].Position;
                v0 = Keys[keyIndex - 1].Value;
            }
 
            if (keyIndex < Keys.Count-1)
            {
                p1 = Keys[keyIndex + 1].Position;
                v1 = Keys[keyIndex + 1].Value;
            }
 
            switch (tangentInType)
            {
                case CurveTangent.Flat:
                    key.TangentIn = 0;
                    break;
                case CurveTangent.Linear:
                    key.TangentIn = v - v0;
                    break;
                case CurveTangent.Smooth:
                    float pn = p1 - p0;
                    if (MathHelper.WithinEpsilon(pn, 0.0f))
                    {
                        key.TangentIn = 0;
                    }
                    else
                    {
                        key.TangentIn = (v1 - v0) * ((p - p0) / pn);
                    }
                    break;
            }
 
            switch (tangentOutType)
            {
                case CurveTangent.Flat:
                    key.TangentOut = 0;
                    break;
                case CurveTangent.Linear:
                    key.TangentOut = v1 - v;
                    break;
                case CurveTangent.Smooth:
                    float pn = p1 - p0;
                    if (Math.Abs(pn) < float.Epsilon)
                    {
                        key.TangentOut = 0;
                    }
                    else
                    {
                        key.TangentOut = (v1 - v0) * ((p1 - p) / pn);
                    }
                    break;
            }
        }
 
        #endregion
 
        #region Private Methods
 
        private int GetNumberOfCycle(float position)
        {
            float cycle = (position - Keys[0].Position) /
                (Keys[Keys.Count - 1].Position - Keys[0].Position);
            if (cycle < 0f)
            {
                cycle -= 1;
            }
            return (int) cycle;
        }
 
        private float GetCurvePosition(float position)
        {
            // Only for position in curve.
            CurveKey prev = Keys[0];
            CurveKey next;
            for (int i = 1; i < Keys.Count; i += 1)
            {
                next = Keys[i];
                if (next.Position >= position)
                {
                    if (prev.Continuity == CurveContinuity.Step)
                    {
                        if (position >= 1f)
                        {
                            return next.Value;
                        }
                        return prev.Value;
                    }
                    // To have t in [0,1]
                    float t = (
                        (position - prev.Position) /
                        (next.Position - prev.Position)
                    );
                    float ts = t * t;
                    float tss = ts * t;
                    /* After a lot of search on internet I have found all about
                     * spline function and bezier (phi'sss ancien) but finally
                     * used hermite curve:
                     * http://en.wikipedia.org/wiki/Cubic_Hermite_spline
                     * P(t) = (2*t^3 - 3t^2 + 1)*P0 + (t^3 - 2t^2 + t)m0 +
                     *        (-2t^3 + 3t^2)P1 + (t^3-t^2)m1
                     * with P0.value = prev.value , m0 = prev.tangentOut,
                     *      P1= next.value, m1 = next.TangentIn.
                     */
                    return (
                        (2 * tss - 3 * ts + 1f) * prev.Value +
                        (tss - 2 * ts + t) * prev.TangentOut +
                        (3 * ts - 2 * tss) * next.Value +
                        (tss - ts) * next.TangentIn
                    );
                }
                prev = next;
            }
            return 0f;
        }
 
        #endregion
    }
}

Archive Download this file

Branches

Number of commits:
Page rendered in 0.08448s using 11 queries.