AxiosEngine-old 

AxiosEngine-old Mercurial Source Tree


Root/axios/Dynamics/Joints/LineJoint.cs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/*
* Farseer Physics Engine based on Box2D.XNA port:
* Copyright (c) 2010 Ian Qvist
*
* Box2D.XNA port of Box2D:
* Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
*
* Original source Box2D:
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty.  In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
 
using System;
using System.Diagnostics;
using FarseerPhysics.Common;
using Microsoft.Xna.Framework;
 
namespace FarseerPhysics.Dynamics.Joints
{
    public class LineJoint : Joint
    {
        private Vector2 _ax, _ay;
        private float _bias;
        private bool _enableMotor;
        private float _gamma;
        private float _impulse;
        private Vector2 _localXAxis;
        private Vector2 _localYAxisA;
        private float _mass;
        private float _maxMotorTorque;
        private float _motorImpulse;
        private float _motorMass;
        private float _motorSpeed;
 
        private float _sAx;
        private float _sAy;
        private float _sBx;
        private float _sBy;
 
        private float _springImpulse;
        private float _springMass;
 
        // Linear constraint (point-to-line)
        // d = pB - pA = xB + rB - xA - rA
        // C = dot(ay, d)
        // Cdot = dot(d, cross(wA, ay)) + dot(ay, vB + cross(wB, rB) - vA - cross(wA, rA))
        //      = -dot(ay, vA) - dot(cross(d + rA, ay), wA) + dot(ay, vB) + dot(cross(rB, ay), vB)
        // J = [-ay, -cross(d + rA, ay), ay, cross(rB, ay)]
 
        // Spring linear constraint
        // C = dot(ax, d)
        // Cdot = = -dot(ax, vA) - dot(cross(d + rA, ax), wA) + dot(ax, vB) + dot(cross(rB, ax), vB)
        // J = [-ax -cross(d+rA, ax) ax cross(rB, ax)]
 
        // Motor rotational constraint
        // Cdot = wB - wA
        // J = [0 0 -1 0 0 1]
 
        internal LineJoint()
        {
            JointType = JointType.Line;
        }
 
        public LineJoint(Body bA, Body bB, Vector2 anchor, Vector2 axis)
            : base(bA, bB)
        {
            JointType = JointType.Line;
 
            LocalAnchorA = bA.GetLocalPoint(anchor);
            LocalAnchorB = bB.GetLocalPoint(anchor);
            LocalXAxis = bA.GetLocalVector(axis);
        }
 
        public Vector2 LocalAnchorA { get; set; }
 
        public Vector2 LocalAnchorB { get; set; }
 
        public override Vector2 WorldAnchorA
        {
            get { return BodyA.GetWorldPoint(LocalAnchorA); }
        }
 
        public override Vector2 WorldAnchorB
        {
            get { return BodyB.GetWorldPoint(LocalAnchorB); }
            set { Debug.Assert(false, "You can't set the world anchor on this joint type."); }
        }
 
        public float JointTranslation
        {
            get
            {
                Body bA = BodyA;
                Body bB = BodyB;
 
                Vector2 pA = bA.GetWorldPoint(LocalAnchorA);
                Vector2 pB = bB.GetWorldPoint(LocalAnchorB);
                Vector2 d = pB - pA;
                Vector2 axis = bA.GetWorldVector(LocalXAxis);
 
                float translation = Vector2.Dot(d, axis);
                return translation;
            }
        }
 
        public float JointSpeed
        {
            get
            {
                float wA = BodyA.AngularVelocityInternal;
                float wB = BodyB.AngularVelocityInternal;
                return wB - wA;
            }
        }
 
        public bool MotorEnabled
        {
            get { return _enableMotor; }
            set
            {
                BodyA.Awake = true;
                BodyB.Awake = true;
                _enableMotor = value;
            }
        }
 
        public float MotorSpeed
        {
            set
            {
                BodyA.Awake = true;
                BodyB.Awake = true;
                _motorSpeed = value;
            }
            get { return _motorSpeed; }
        }
 
        public float MaxMotorTorque
        {
            set
            {
                BodyA.Awake = true;
                BodyB.Awake = true;
                _maxMotorTorque = value;
            }
            get { return _maxMotorTorque; }
        }
 
        public float Frequency { get; set; }
 
        public float DampingRatio { get; set; }
 
        public Vector2 LocalXAxis
        {
            get { return _localXAxis; }
            set
            {
                _localXAxis = value;
                _localYAxisA = MathUtils.Cross(1.0f, _localXAxis);
            }
        }
 
        public override Vector2 GetReactionForce(float invDt)
        {
            return invDt * (_impulse * _ay + _springImpulse * _ax);
        }
 
        public override float GetReactionTorque(float invDt)
        {
            return invDt * _motorImpulse;
        }
 
        internal override void InitVelocityConstraints(ref TimeStep step)
        {
            Body bA = BodyA;
            Body bB = BodyB;
 
            LocalCenterA = bA.LocalCenter;
            LocalCenterB = bB.LocalCenter;
 
            Transform xfA;
            bA.GetTransform(out xfA);
            Transform xfB;
            bB.GetTransform(out xfB);
 
            // Compute the effective masses.
            Vector2 rA = MathUtils.Multiply(ref xfA.R, LocalAnchorA - LocalCenterA);
            Vector2 rB = MathUtils.Multiply(ref xfB.R, LocalAnchorB - LocalCenterB);
            Vector2 d = bB.Sweep.C + rB - bA.Sweep.C - rA;
 
            InvMassA = bA.InvMass;
            InvIA = bA.InvI;
            InvMassB = bB.InvMass;
            InvIB = bB.InvI;
 
            // Point to line constraint
            {
                _ay = MathUtils.Multiply(ref xfA.R, _localYAxisA);
                _sAy = MathUtils.Cross(d + rA, _ay);
                _sBy = MathUtils.Cross(rB, _ay);
 
                _mass = InvMassA + InvMassB + InvIA * _sAy * _sAy + InvIB * _sBy * _sBy;
 
                if (_mass > 0.0f)
                {
                    _mass = 1.0f / _mass;
                }
            }
 
            // Spring constraint
            _springMass = 0.0f;
            if (Frequency > 0.0f)
            {
                _ax = MathUtils.Multiply(ref xfA.R, LocalXAxis);
                _sAx = MathUtils.Cross(d + rA, _ax);
                _sBx = MathUtils.Cross(rB, _ax);
 
                float invMass = InvMassA + InvMassB + InvIA * _sAx * _sAx + InvIB * _sBx * _sBx;
 
                if (invMass > 0.0f)
                {
                    _springMass = 1.0f / invMass;
 
                    float C = Vector2.Dot(d, _ax);
 
                    // Frequency
                    float omega = 2.0f * Settings.Pi * Frequency;
 
                    // Damping coefficient
                    float da = 2.0f * _springMass * DampingRatio * omega;
 
                    // Spring stiffness
                    float k = _springMass * omega * omega;
 
                    // magic formulas
                    _gamma = step.dt * (da + step.dt * k);
                    if (_gamma > 0.0f)
                    {
                        _gamma = 1.0f / _gamma;
                    }
 
                    _bias = C * step.dt * k * _gamma;
 
                    _springMass = invMass + _gamma;
                    if (_springMass > 0.0f)
                    {
                        _springMass = 1.0f / _springMass;
                    }
                }
            }
            else
            {
                _springImpulse = 0.0f;
                _springMass = 0.0f;
            }
 
            // Rotational motor
            if (_enableMotor)
            {
                _motorMass = InvIA + InvIB;
                if (_motorMass > 0.0f)
                {
                    _motorMass = 1.0f / _motorMass;
                }
            }
            else
            {
                _motorMass = 0.0f;
                _motorImpulse = 0.0f;
            }
 
            if (Settings.EnableWarmstarting)
            {
                // Account for variable time step.
                _impulse *= step.dtRatio;
                _springImpulse *= step.dtRatio;
                _motorImpulse *= step.dtRatio;
 
                Vector2 P = _impulse * _ay + _springImpulse * _ax;
                float LA = _impulse * _sAy + _springImpulse * _sAx + _motorImpulse;
                float LB = _impulse * _sBy + _springImpulse * _sBx + _motorImpulse;
 
                bA.LinearVelocityInternal -= InvMassA * P;
                bA.AngularVelocityInternal -= InvIA * LA;
 
                bB.LinearVelocityInternal += InvMassB * P;
                bB.AngularVelocityInternal += InvIB * LB;
            }
            else
            {
                _impulse = 0.0f;
                _springImpulse = 0.0f;
                _motorImpulse = 0.0f;
            }
        }
 
        internal override void SolveVelocityConstraints(ref TimeStep step)
        {
            Body bA = BodyA;
            Body bB = BodyB;
 
            Vector2 vA = bA.LinearVelocity;
            float wA = bA.AngularVelocityInternal;
            Vector2 vB = bB.LinearVelocityInternal;
            float wB = bB.AngularVelocityInternal;
 
            // Solve spring constraint
            {
                float Cdot = Vector2.Dot(_ax, vB - vA) + _sBx * wB - _sAx * wA;
                float impulse = -_springMass * (Cdot + _bias + _gamma * _springImpulse);
                _springImpulse += impulse;
 
                Vector2 P = impulse * _ax;
                float LA = impulse * _sAx;
                float LB = impulse * _sBx;
 
                vA -= InvMassA * P;
                wA -= InvIA * LA;
 
                vB += InvMassB * P;
                wB += InvIB * LB;
            }
 
            // Solve rotational motor constraint
            {
                float Cdot = wB - wA - _motorSpeed;
                float impulse = -_motorMass * Cdot;
 
                float oldImpulse = _motorImpulse;
                float maxImpulse = step.dt * _maxMotorTorque;
                _motorImpulse = MathUtils.Clamp(_motorImpulse + impulse, -maxImpulse, maxImpulse);
                impulse = _motorImpulse - oldImpulse;
 
                wA -= InvIA * impulse;
                wB += InvIB * impulse;
            }
 
            // Solve point to line constraint
            {
                float Cdot = Vector2.Dot(_ay, vB - vA) + _sBy * wB - _sAy * wA;
                float impulse = _mass * (-Cdot);
                _impulse += impulse;
 
                Vector2 P = impulse * _ay;
                float LA = impulse * _sAy;
                float LB = impulse * _sBy;
 
                vA -= InvMassA * P;
                wA -= InvIA * LA;
 
                vB += InvMassB * P;
                wB += InvIB * LB;
            }
 
            bA.LinearVelocityInternal = vA;
            bA.AngularVelocityInternal = wA;
            bB.LinearVelocityInternal = vB;
            bB.AngularVelocityInternal = wB;
        }
 
        internal override bool SolvePositionConstraints()
        {
            Body bA = BodyA;
            Body bB = BodyB;
 
            Vector2 xA = bA.Sweep.C;
            float angleA = bA.Sweep.A;
 
            Vector2 xB = bB.Sweep.C;
            float angleB = bB.Sweep.A;
 
            Mat22 RA = new Mat22(angleA);
            Mat22 RB = new Mat22(angleB);
 
            Vector2 rA = MathUtils.Multiply(ref RA, LocalAnchorA - LocalCenterA);
            Vector2 rB = MathUtils.Multiply(ref RB, LocalAnchorB - LocalCenterB);
            Vector2 d = xB + rB - xA - rA;
 
            Vector2 ay = MathUtils.Multiply(ref RA, _localYAxisA);
 
            float sAy = MathUtils.Cross(d + rA, ay);
            float sBy = MathUtils.Cross(rB, ay);
 
            float C = Vector2.Dot(d, ay);
 
            float k = InvMassA + InvMassB + InvIA * _sAy * _sAy + InvIB * _sBy * _sBy;
 
            float impulse;
            if (k != 0.0f)
            {
                impulse = -C / k;
            }
            else
            {
                impulse = 0.0f;
            }
 
            Vector2 P = impulse * ay;
            float LA = impulse * sAy;
            float LB = impulse * sBy;
 
            xA -= InvMassA * P;
            angleA -= InvIA * LA;
            xB += InvMassB * P;
            angleB += InvIB * LB;
 
            // TODO_ERIN remove need for this.
            bA.Sweep.C = xA;
            bA.Sweep.A = angleA;
            bB.Sweep.C = xB;
            bB.Sweep.A = angleB;
            bA.SynchronizeTransform();
            bB.SynchronizeTransform();
 
            return Math.Abs(C) <= Settings.LinearSlop;
        }
 
        public float GetMotorTorque(float invDt)
        {
            return invDt * _motorImpulse;
        }
    }
}
Source at commit 41eaa92cf131 created 12 years 6 months ago.
By Nathan Adams, + Fixing UI detect bug

Archive Download this file

Page rendered in 0.83513s using 11 queries.