#region License /* FNA - XNA4 Reimplementation for Desktop Platforms * Copyright 2009-2016 Ethan Lee and the MonoGame Team * * Released under the Microsoft Public License. * See LICENSE for details. */ /* Derived from code by the Mono.Xna Team (Copyright 2006). * Released under the MIT License. See monoxna.LICENSE for details. */ #endregion #region Using Statements using System; using System.ComponentModel; using System.Diagnostics; using Microsoft.Xna.Framework.Design; #endregion namespace Microsoft.Xna.Framework { /// /// Describes a 4D-vector. /// [Serializable] [TypeConverter(typeof(Vector4Converter))] [DebuggerDisplay("{DebugDisplayString,nq}")] public struct Vector4 : IEquatable { #region Public Static Properties /// /// Returns a with components 0, 0, 0, 0. /// public static Vector4 Zero { get { return zero; } } /// /// Returns a with components 1, 1, 1, 1. /// public static Vector4 One { get { return unit; } } /// /// Returns a with components 1, 0, 0, 0. /// public static Vector4 UnitX { get { return unitX; } } /// /// Returns a with components 0, 1, 0, 0. /// public static Vector4 UnitY { get { return unitY; } } /// /// Returns a with components 0, 0, 1, 0. /// public static Vector4 UnitZ { get { return unitZ; } } /// /// Returns a with components 0, 0, 0, 1. /// public static Vector4 UnitW { get { return unitW; } } #endregion #region Internal Properties internal string DebugDisplayString { get { return string.Concat( X.ToString(), " ", Y.ToString(), " ", Z.ToString(), " ", W.ToString() ); } } #endregion #region Public Fields /// /// The x coordinate of this . /// public float X; /// /// The y coordinate of this . /// public float Y; /// /// The z coordinate of this . /// public float Z; /// /// The w coordinate of this . /// public float W; #endregion #region Private Static Fields private static Vector4 zero = new Vector4(); // Not readonly for performance -flibit private static readonly Vector4 unit = new Vector4(1f, 1f, 1f, 1f); private static readonly Vector4 unitX = new Vector4(1f, 0f, 0f, 0f); private static readonly Vector4 unitY = new Vector4(0f, 1f, 0f, 0f); private static readonly Vector4 unitZ = new Vector4(0f, 0f, 1f, 0f); private static readonly Vector4 unitW = new Vector4(0f, 0f, 0f, 1f); #endregion #region Public Constructors /// /// Constructs a 3d vector with X, Y, Z and W from four values. /// /// The x coordinate in 4d-space. /// The y coordinate in 4d-space. /// The z coordinate in 4d-space. /// The w coordinate in 4d-space. public Vector4(float x, float y, float z, float w) { this.X = x; this.Y = y; this.Z = z; this.W = w; } /// /// Constructs a 3d vector with X and Z from and Z and W from the scalars. /// /// The x and y coordinates in 4d-space. /// The z coordinate in 4d-space. /// The w coordinate in 4d-space. public Vector4(Vector2 value, float z, float w) { this.X = value.X; this.Y = value.Y; this.Z = z; this.W = w; } /// /// Constructs a 3d vector with X, Y, Z from and W from a scalar. /// /// The x, y and z coordinates in 4d-space. /// The w coordinate in 4d-space. public Vector4(Vector3 value, float w) { this.X = value.X; this.Y = value.Y; this.Z = value.Z; this.W = w; } /// /// Constructs a 4d vector with X, Y, Z and W set to the same value. /// /// The x, y, z and w coordinates in 4d-space. public Vector4(float value) { this.X = value; this.Y = value; this.Z = value; this.W = value; } #endregion #region Public Methods /// /// Compares whether current instance is equal to specified . /// /// The to compare. /// true if the instances are equal; false otherwise. public override bool Equals(object obj) { return (obj is Vector4) ? this == (Vector4) obj : false; } /// /// Compares whether current instance is equal to specified . /// /// The to compare. /// true if the instances are equal; false otherwise. public bool Equals(Vector4 other) { return ( (MathHelper.WithinEpsilon(this.W, other.W)) && (MathHelper.WithinEpsilon(this.X, other.X)) && (MathHelper.WithinEpsilon(this.Y, other.Y)) && (MathHelper.WithinEpsilon(this.Z, other.Z)) ); } /// /// Gets the hash code of this . /// /// Hash code of this . public override int GetHashCode() { return (int) (this.W + this.X + this.Y + this.Y); } /// /// Returns the length of this . /// /// The length of this . public float Length() { float result; DistanceSquared(ref this, ref zero, out result); return (float) Math.Sqrt(result); } /// /// Returns the squared length of this . /// /// The squared length of this . public float LengthSquared() { float result; DistanceSquared(ref this, ref zero, out result); return result; } /// /// Turns this to a unit vector with the same direction. /// public void Normalize() { Normalize(ref this, out this); } public override string ToString() { return ( "{X:" + X.ToString() + " Y:" + Y.ToString() + " Z:" + Z.ToString() + " W:" + W.ToString() + "}" ); } #endregion #region Public Static Methods /// /// Performs vector addition on and . /// /// The first vector to add. /// The second vector to add. /// The result of the vector addition. public static Vector4 Add(Vector4 value1, Vector4 value2) { value1.W += value2.W; value1.X += value2.X; value1.Y += value2.Y; value1.Z += value2.Z; return value1; } /// /// Performs vector addition on and /// , storing the result of the /// addition in . /// /// The first vector to add. /// The second vector to add. /// The result of the vector addition. public static void Add(ref Vector4 value1, ref Vector4 value2, out Vector4 result) { result.W = value1.W + value2.W; result.X = value1.X + value2.X; result.Y = value1.Y + value2.Y; result.Z = value1.Z + value2.Z; } /// /// Creates a new that contains the cartesian coordinates of a vector specified in barycentric coordinates and relative to 4d-triangle. /// /// The first vector of 4d-triangle. /// The second vector of 4d-triangle. /// The third vector of 4d-triangle. /// Barycentric scalar b2 which represents a weighting factor towards second vector of 4d-triangle. /// Barycentric scalar b3 which represents a weighting factor towards third vector of 4d-triangle. /// The cartesian translation of barycentric coordinates. public static Vector4 Barycentric( Vector4 value1, Vector4 value2, Vector4 value3, float amount1, float amount2 ) { return new Vector4( MathHelper.Barycentric(value1.X, value2.X, value3.X, amount1, amount2), MathHelper.Barycentric(value1.Y, value2.Y, value3.Y, amount1, amount2), MathHelper.Barycentric(value1.Z, value2.Z, value3.Z, amount1, amount2), MathHelper.Barycentric(value1.W, value2.W, value3.W, amount1, amount2) ); } /// /// Creates a new that contains the cartesian coordinates of a vector specified in barycentric coordinates and relative to 4d-triangle. /// /// The first vector of 4d-triangle. /// The second vector of 4d-triangle. /// The third vector of 4d-triangle. /// Barycentric scalar b2 which represents a weighting factor towards second vector of 4d-triangle. /// Barycentric scalar b3 which represents a weighting factor towards third vector of 4d-triangle. /// The cartesian translation of barycentric coordinates as an output parameter. public static void Barycentric( ref Vector4 value1, ref Vector4 value2, ref Vector4 value3, float amount1, float amount2, out Vector4 result ) { result.X = MathHelper.Barycentric(value1.X, value2.X, value3.X, amount1, amount2); result.Y = MathHelper.Barycentric(value1.Y, value2.Y, value3.Y, amount1, amount2); result.Z = MathHelper.Barycentric(value1.Z, value2.Z, value3.Z, amount1, amount2); result.W = MathHelper.Barycentric(value1.W, value2.W, value3.W, amount1, amount2); } /// /// Creates a new that contains CatmullRom interpolation of the specified vectors. /// /// The first vector in interpolation. /// The second vector in interpolation. /// The third vector in interpolation. /// The fourth vector in interpolation. /// Weighting factor. /// The result of CatmullRom interpolation. public static Vector4 CatmullRom( Vector4 value1, Vector4 value2, Vector4 value3, Vector4 value4, float amount ) { return new Vector4( MathHelper.CatmullRom(value1.X, value2.X, value3.X, value4.X, amount), MathHelper.CatmullRom(value1.Y, value2.Y, value3.Y, value4.Y, amount), MathHelper.CatmullRom(value1.Z, value2.Z, value3.Z, value4.Z, amount), MathHelper.CatmullRom(value1.W, value2.W, value3.W, value4.W, amount) ); } /// /// Creates a new that contains CatmullRom interpolation of the specified vectors. /// /// The first vector in interpolation. /// The second vector in interpolation. /// The third vector in interpolation. /// The fourth vector in interpolation. /// Weighting factor. /// The result of CatmullRom interpolation as an output parameter. public static void CatmullRom( ref Vector4 value1, ref Vector4 value2, ref Vector4 value3, ref Vector4 value4, float amount, out Vector4 result ) { result.X = MathHelper.CatmullRom(value1.X, value2.X, value3.X, value4.X, amount); result.Y = MathHelper.CatmullRom(value1.Y, value2.Y, value3.Y, value4.Y, amount); result.Z = MathHelper.CatmullRom(value1.Z, value2.Z, value3.Z, value4.Z, amount); result.W = MathHelper.CatmullRom(value1.W, value2.W, value3.W, value4.W, amount); } /// /// Clamps the specified value within a range. /// /// The value to clamp. /// The min value. /// The max value. /// The clamped value. public static Vector4 Clamp(Vector4 value1, Vector4 min, Vector4 max) { return new Vector4( MathHelper.Clamp(value1.X, min.X, max.X), MathHelper.Clamp(value1.Y, min.Y, max.Y), MathHelper.Clamp(value1.Z, min.Z, max.Z), MathHelper.Clamp(value1.W, min.W, max.W) ); } /// /// Clamps the specified value within a range. /// /// The value to clamp. /// The min value. /// The max value. /// The clamped value as an output parameter. public static void Clamp( ref Vector4 value1, ref Vector4 min, ref Vector4 max, out Vector4 result ) { result.X = MathHelper.Clamp(value1.X, min.X, max.X); result.Y = MathHelper.Clamp(value1.Y, min.Y, max.Y); result.Z = MathHelper.Clamp(value1.Z, min.Z, max.Z); result.W = MathHelper.Clamp(value1.W, min.W, max.W); } /// /// Returns the distance between two vectors. /// /// The first vector. /// The second vector. /// The distance between two vectors. public static float Distance(Vector4 value1, Vector4 value2) { return (float) Math.Sqrt(DistanceSquared(value1, value2)); } /// /// Returns the distance between two vectors. /// /// The first vector. /// The second vector. /// The distance between two vectors as an output parameter. public static void Distance(ref Vector4 value1, ref Vector4 value2, out float result) { result = (float) Math.Sqrt(DistanceSquared(value1, value2)); } /// /// Returns the squared distance between two vectors. /// /// The first vector. /// The second vector. /// The squared distance between two vectors. public static float DistanceSquared(Vector4 value1, Vector4 value2) { return ( (value1.W - value2.W) * (value1.W - value2.W) + (value1.X - value2.X) * (value1.X - value2.X) + (value1.Y - value2.Y) * (value1.Y - value2.Y) + (value1.Z - value2.Z) * (value1.Z - value2.Z) ); } /// /// Returns the squared distance between two vectors. /// /// The first vector. /// The second vector. /// The squared distance between two vectors as an output parameter. public static void DistanceSquared( ref Vector4 value1, ref Vector4 value2, out float result ) { result = ( (value1.W - value2.W) * (value1.W - value2.W) + (value1.X - value2.X) * (value1.X - value2.X) + (value1.Y - value2.Y) * (value1.Y - value2.Y) + (value1.Z - value2.Z) * (value1.Z - value2.Z) ); } /// /// Divides the components of a by the components of another . /// /// Source . /// Divisor . /// The result of dividing the vectors. public static Vector4 Divide(Vector4 value1, Vector4 value2) { value1.W /= value2.W; value1.X /= value2.X; value1.Y /= value2.Y; value1.Z /= value2.Z; return value1; } /// /// Divides the components of a by a scalar. /// /// Source . /// Divisor scalar. /// The result of dividing a vector by a scalar. public static Vector4 Divide(Vector4 value1, float divider) { float factor = 1f / divider; value1.W *= factor; value1.X *= factor; value1.Y *= factor; value1.Z *= factor; return value1; } /// /// Divides the components of a by a scalar. /// /// Source . /// Divisor scalar. /// The result of dividing a vector by a scalar as an output parameter. public static void Divide(ref Vector4 value1, float divider, out Vector4 result) { float factor = 1f / divider; result.W = value1.W * factor; result.X = value1.X * factor; result.Y = value1.Y * factor; result.Z = value1.Z * factor; } /// /// Divides the components of a by the components of another . /// /// Source . /// Divisor . /// The result of dividing the vectors as an output parameter. public static void Divide( ref Vector4 value1, ref Vector4 value2, out Vector4 result ) { result.W = value1.W / value2.W; result.X = value1.X / value2.X; result.Y = value1.Y / value2.Y; result.Z = value1.Z / value2.Z; } /// /// Returns a dot product of two vectors. /// /// The first vector. /// The second vector. /// The dot product of two vectors. public static float Dot(Vector4 vector1, Vector4 vector2) { return ( vector1.X * vector2.X + vector1.Y * vector2.Y + vector1.Z * vector2.Z + vector1.W * vector2.W ); } /// /// Returns a dot product of two vectors. /// /// The first vector. /// The second vector. /// The dot product of two vectors as an output parameter. public static void Dot(ref Vector4 vector1, ref Vector4 vector2, out float result) { result = ( (vector1.X * vector2.X) + (vector1.Y * vector2.Y) + (vector1.Z * vector2.Z) + (vector1.W * vector2.W) ); } /// /// Creates a new that contains hermite spline interpolation. /// /// The first position vector. /// The first tangent vector. /// The second position vector. /// The second tangent vector. /// Weighting factor. /// The hermite spline interpolation vector. public static Vector4 Hermite( Vector4 value1, Vector4 tangent1, Vector4 value2, Vector4 tangent2, float amount ) { return new Vector4( MathHelper.Hermite(value1.W, tangent1.W, value2.W, tangent2.W, amount), MathHelper.Hermite(value1.X, tangent1.X, value2.X, tangent2.X, amount), MathHelper.Hermite(value1.Y, tangent1.Y, value2.Y, tangent2.Y, amount), MathHelper.Hermite(value1.Z, tangent1.Z, value2.Z, tangent2.Z, amount) ); } /// /// Creates a new that contains hermite spline interpolation. /// /// The first position vector. /// The first tangent vector. /// The second position vector. /// The second tangent vector. /// Weighting factor. /// The hermite spline interpolation vector as an output parameter. public static void Hermite( ref Vector4 value1, ref Vector4 tangent1, ref Vector4 value2, ref Vector4 tangent2, float amount, out Vector4 result ) { result.W = MathHelper.Hermite(value1.W, tangent1.W, value2.W, tangent2.W, amount); result.X = MathHelper.Hermite(value1.X, tangent1.X, value2.X, tangent2.X, amount); result.Y = MathHelper.Hermite(value1.Y, tangent1.Y, value2.Y, tangent2.Y, amount); result.Z = MathHelper.Hermite(value1.Z, tangent1.Z, value2.Z, tangent2.Z, amount); } /// /// Creates a new that contains linear interpolation of the specified vectors. /// /// The first vector. /// The second vector. /// Weighting value(between 0.0 and 1.0). /// The result of linear interpolation of the specified vectors. public static Vector4 Lerp(Vector4 value1, Vector4 value2, float amount) { return new Vector4( MathHelper.Lerp(value1.X, value2.X, amount), MathHelper.Lerp(value1.Y, value2.Y, amount), MathHelper.Lerp(value1.Z, value2.Z, amount), MathHelper.Lerp(value1.W, value2.W, amount) ); } /// /// Creates a new that contains linear interpolation of the specified vectors. /// /// The first vector. /// The second vector. /// Weighting value(between 0.0 and 1.0). /// The result of linear interpolation of the specified vectors as an output parameter. public static void Lerp( ref Vector4 value1, ref Vector4 value2, float amount, out Vector4 result ) { result.X = MathHelper.Lerp(value1.X, value2.X, amount); result.Y = MathHelper.Lerp(value1.Y, value2.Y, amount); result.Z = MathHelper.Lerp(value1.Z, value2.Z, amount); result.W = MathHelper.Lerp(value1.W, value2.W, amount); } /// /// Creates a new that contains a maximal values from the two vectors. /// /// The first vector. /// The second vector. /// The with maximal values from the two vectors. public static Vector4 Max(Vector4 value1, Vector4 value2) { return new Vector4( MathHelper.Max(value1.X, value2.X), MathHelper.Max(value1.Y, value2.Y), MathHelper.Max(value1.Z, value2.Z), MathHelper.Max(value1.W, value2.W) ); } /// /// Creates a new that contains a maximal values from the two vectors. /// /// The first vector. /// The second vector. /// The with maximal values from the two vectors as an output parameter. public static void Max(ref Vector4 value1, ref Vector4 value2, out Vector4 result) { result.X = MathHelper.Max(value1.X, value2.X); result.Y = MathHelper.Max(value1.Y, value2.Y); result.Z = MathHelper.Max(value1.Z, value2.Z); result.W = MathHelper.Max(value1.W, value2.W); } /// /// Creates a new that contains a minimal values from the two vectors. /// /// The first vector. /// The second vector. /// The with minimal values from the two vectors. public static Vector4 Min(Vector4 value1, Vector4 value2) { return new Vector4( MathHelper.Min(value1.X, value2.X), MathHelper.Min(value1.Y, value2.Y), MathHelper.Min(value1.Z, value2.Z), MathHelper.Min(value1.W, value2.W) ); } /// /// Creates a new that contains a minimal values from the two vectors. /// /// The first vector. /// The second vector. /// The with minimal values from the two vectors as an output parameter. public static void Min(ref Vector4 value1, ref Vector4 value2, out Vector4 result) { result.X = MathHelper.Min(value1.X, value2.X); result.Y = MathHelper.Min(value1.Y, value2.Y); result.Z = MathHelper.Min(value1.Z, value2.Z); result.W = MathHelper.Min(value1.W, value2.W); } /// /// Creates a new that contains a multiplication of two vectors. /// /// Source . /// Source . /// The result of the vector multiplication. public static Vector4 Multiply(Vector4 value1, Vector4 value2) { value1.W *= value2.W; value1.X *= value2.X; value1.Y *= value2.Y; value1.Z *= value2.Z; return value1; } /// /// Creates a new that contains a multiplication of and a scalar. /// /// Source . /// Scalar value. /// The result of the vector multiplication with a scalar. public static Vector4 Multiply(Vector4 value1, float scaleFactor) { value1.W *= scaleFactor; value1.X *= scaleFactor; value1.Y *= scaleFactor; value1.Z *= scaleFactor; return value1; } /// /// Creates a new that contains a multiplication of and a scalar. /// /// Source . /// Scalar value. /// The result of the multiplication with a scalar as an output parameter. public static void Multiply(ref Vector4 value1, float scaleFactor, out Vector4 result) { result.W = value1.W * scaleFactor; result.X = value1.X * scaleFactor; result.Y = value1.Y * scaleFactor; result.Z = value1.Z * scaleFactor; } /// /// Creates a new that contains a multiplication of two vectors. /// /// Source . /// Source . /// The result of the vector multiplication as an output parameter. public static void Multiply(ref Vector4 value1, ref Vector4 value2, out Vector4 result) { result.W = value1.W * value2.W; result.X = value1.X * value2.X; result.Y = value1.Y * value2.Y; result.Z = value1.Z * value2.Z; } /// /// Creates a new that contains the specified vector inversion. /// /// Source . /// The result of the vector inversion. public static Vector4 Negate(Vector4 value) { value = new Vector4(-value.X, -value.Y, -value.Z, -value.W); return value; } /// /// Creates a new that contains the specified vector inversion. /// /// Source . /// The result of the vector inversion as an output parameter. public static void Negate(ref Vector4 value, out Vector4 result) { result.X = -value.X; result.Y = -value.Y; result.Z = -value.Z; result.W = -value.W; } /// /// Creates a new that contains a normalized values from another vector. /// /// Source . /// Unit vector. public static Vector4 Normalize(Vector4 vector) { Normalize(ref vector, out vector); return vector; } /// /// Creates a new that contains a normalized values from another vector. /// /// Source . /// Unit vector as an output parameter. public static void Normalize(ref Vector4 vector, out Vector4 result) { float factor; DistanceSquared(ref vector, ref zero, out factor); factor = 1f / (float) Math.Sqrt(factor); result.W = vector.W * factor; result.X = vector.X * factor; result.Y = vector.Y * factor; result.Z = vector.Z * factor; } /// /// Creates a new that contains cubic interpolation of the specified vectors. /// /// Source . /// Source . /// Weighting value. /// Cubic interpolation of the specified vectors. public static Vector4 SmoothStep(Vector4 value1, Vector4 value2, float amount) { return new Vector4( MathHelper.SmoothStep(value1.X, value2.X, amount), MathHelper.SmoothStep(value1.Y, value2.Y, amount), MathHelper.SmoothStep(value1.Z, value2.Z, amount), MathHelper.SmoothStep(value1.W, value2.W, amount) ); } /// /// Creates a new that contains cubic interpolation of the specified vectors. /// /// Source . /// Source . /// Weighting value. /// Cubic interpolation of the specified vectors as an output parameter. public static void SmoothStep( ref Vector4 value1, ref Vector4 value2, float amount, out Vector4 result ) { result.X = MathHelper.SmoothStep(value1.X, value2.X, amount); result.Y = MathHelper.SmoothStep(value1.Y, value2.Y, amount); result.Z = MathHelper.SmoothStep(value1.Z, value2.Z, amount); result.W = MathHelper.SmoothStep(value1.W, value2.W, amount); } /// /// Creates a new that contains subtraction of on from a another. /// /// Source . /// Source . /// The result of the vector subtraction. public static Vector4 Subtract(Vector4 value1, Vector4 value2) { value1.W -= value2.W; value1.X -= value2.X; value1.Y -= value2.Y; value1.Z -= value2.Z; return value1; } /// /// Creates a new that contains subtraction of on from a another. /// /// Source . /// Source . /// The result of the vector subtraction as an output parameter. public static void Subtract(ref Vector4 value1, ref Vector4 value2, out Vector4 result) { result.W = value1.W - value2.W; result.X = value1.X - value2.X; result.Y = value1.Y - value2.Y; result.Z = value1.Z - value2.Z; } /// /// Creates a new that contains a transformation of 2d-vector by the specified . /// /// Source . /// The transformation . /// Transformed . public static Vector4 Transform(Vector2 position, Matrix matrix) { Vector4 result; Transform(ref position, ref matrix, out result); return result; } /// /// Creates a new that contains a transformation of 3d-vector by the specified . /// /// Source . /// The transformation . /// Transformed . public static Vector4 Transform(Vector3 position, Matrix matrix) { Vector4 result; Transform(ref position, ref matrix, out result); return result; } /// /// Creates a new that contains a transformation of 4d-vector by the specified . /// /// Source . /// The transformation . /// Transformed . public static Vector4 Transform(Vector4 vector, Matrix matrix) { Transform(ref vector, ref matrix, out vector); return vector; } /// /// Creates a new that contains a transformation of 2d-vector by the specified . /// /// Source . /// The transformation . /// Transformed as an output parameter. public static void Transform(ref Vector2 position, ref Matrix matrix, out Vector4 result) { result = new Vector4( (position.X * matrix.M11) + (position.Y * matrix.M21) + matrix.M41, (position.X * matrix.M12) + (position.Y * matrix.M22) + matrix.M42, (position.X * matrix.M13) + (position.Y * matrix.M23) + matrix.M43, (position.X * matrix.M14) + (position.Y * matrix.M24) + matrix.M44 ); } /// /// Creates a new that contains a transformation of 3d-vector by the specified . /// /// Source . /// The transformation . /// Transformed as an output parameter. public static void Transform(ref Vector3 position, ref Matrix matrix, out Vector4 result) { float x = ( (position.X * matrix.M11) + (position.Y * matrix.M21) + (position.Z * matrix.M31) + matrix.M41 ); float y = ( (position.X * matrix.M12) + (position.Y * matrix.M22) + (position.Z * matrix.M32) + matrix.M42 ); float z = ( (position.X * matrix.M13) + (position.Y * matrix.M23) + (position.Z * matrix.M33) + matrix.M43 ); float w = ( (position.X * matrix.M14) + (position.Y * matrix.M24) + (position.Z * matrix.M34) + matrix.M44 ); result.X = x; result.Y = y; result.Z = z; result.W = w; } /// /// Creates a new that contains a transformation of 4d-vector by the specified . /// /// Source . /// The transformation . /// Transformed as an output parameter. public static void Transform(ref Vector4 vector, ref Matrix matrix, out Vector4 result) { float x = ( (vector.X * matrix.M11) + (vector.Y * matrix.M21) + (vector.Z * matrix.M31) + (vector.W * matrix.M41) ); float y = ( (vector.X * matrix.M12) + (vector.Y * matrix.M22) + (vector.Z * matrix.M32) + (vector.W * matrix.M42) ); float z = ( (vector.X * matrix.M13) + (vector.Y * matrix.M23) + (vector.Z * matrix.M33) + (vector.W * matrix.M43) ); float w = ( (vector.X * matrix.M14) + (vector.Y * matrix.M24) + (vector.Z * matrix.M34) + (vector.W * matrix.M44) ); result.X = x; result.Y = y; result.Z = z; result.W = w; } /// /// Apply transformation on all vectors within array of by the specified and places the results in an another array. /// /// Source array. /// The transformation . /// Destination array. public static void Transform( Vector4[] sourceArray, ref Matrix matrix, Vector4[] destinationArray ) { if (sourceArray == null) { throw new ArgumentNullException("sourceArray"); } if (destinationArray == null) { throw new ArgumentNullException("destinationArray"); } if (destinationArray.Length < sourceArray.Length) { throw new ArgumentException( "destinationArray is too small to contain the result." ); } for (int i = 0; i < sourceArray.Length; i += 1) { Transform( ref sourceArray[i], ref matrix, out destinationArray[i] ); } } /// /// Apply transformation on vectors within array of by the specified and places the results in an another array. /// /// Source array. /// The starting index of transformation in the source array. /// The transformation . /// Destination array. /// The starting index in the destination array, where the first should be written. /// The number of vectors to be transformed. public static void Transform( Vector4[] sourceArray, int sourceIndex, ref Matrix matrix, Vector4[] destinationArray, int destinationIndex, int length ) { if (sourceArray == null) { throw new ArgumentNullException("sourceArray"); } if (destinationArray == null) { throw new ArgumentNullException("destinationArray"); } if (destinationIndex + length > destinationArray.Length) { throw new ArgumentException( "destinationArray is too small to contain the result." ); } if (sourceIndex + length > sourceArray.Length) { throw new ArgumentException( "The combination of sourceIndex and length was greater than sourceArray.Length." ); } for (int i = 0; i < length; i += 1) { Transform( ref sourceArray[i + sourceIndex], ref matrix, out destinationArray[i + destinationIndex] ); } } /// /// Creates a new that contains a transformation of 2d-vector by the specified . /// /// Source . /// The which contains rotation transformation. /// Transformed . public static Vector4 Transform(Vector2 value, Quaternion rotation) { Vector4 result; Transform(ref value, ref rotation, out result); return result; } /// /// Creates a new that contains a transformation of 3d-vector by the specified . /// /// Source . /// The which contains rotation transformation. /// Transformed . public static Vector4 Transform(Vector3 value, Quaternion rotation) { Vector4 result; Transform(ref value, ref rotation, out result); return result; } /// /// Creates a new that contains a transformation of 4d-vector by the specified . /// /// Source . /// The which contains rotation transformation. /// Transformed . public static Vector4 Transform(Vector4 value, Quaternion rotation) { Vector4 result; Transform(ref value, ref rotation, out result); return result; } /// /// Creates a new that contains a transformation of 2d-vector by the specified . /// /// Source . /// The which contains rotation transformation. /// Transformed as an output parameter. public static void Transform( ref Vector2 value, ref Quaternion rotation, out Vector4 result ) { double xx = rotation.X + rotation.X; double yy = rotation.Y + rotation.Y; double zz = rotation.Z + rotation.Z; double wxx = rotation.W * xx; double wyy = rotation.W * yy; double wzz = rotation.W * zz; double xxx = rotation.X * xx; double xyy = rotation.X * yy; double xzz = rotation.X * zz; double yyy = rotation.Y * yy; double yzz = rotation.Y * zz; double zzz = rotation.Z * zz; result.X = (float) ( (double) value.X * (1.0 - yyy - zzz) + (double) value.Y * (xyy - wzz) ); result.Y = (float) ( (double) value.X * (xyy + wzz) + (double) value.Y * (1.0 - xxx - zzz) ); result.Z = (float) ( (double) value.X * (xzz - wyy) + (double) value.Y * (yzz + wxx) ); result.W = 1.0f; } /// /// Creates a new that contains a transformation of 3d-vector by the specified . /// /// Source . /// The which contains rotation transformation. /// Transformed as an output parameter. public static void Transform( ref Vector3 value, ref Quaternion rotation, out Vector4 result ) { double xx = rotation.X + rotation.X; double yy = rotation.Y + rotation.Y; double zz = rotation.Z + rotation.Z; double wxx = rotation.W * xx; double wyy = rotation.W * yy; double wzz = rotation.W * zz; double xxx = rotation.X * xx; double xyy = rotation.X * yy; double xzz = rotation.X * zz; double yyy = rotation.Y * yy; double yzz = rotation.Y * zz; double zzz = rotation.Z * zz; result.X = (float) ( (double) value.X * (1.0 - yyy - zzz) + (double) value.Y * (xyy - wzz) + (double) value.Z * (xzz + wyy) ); result.Y = (float) ( (double) value.X * (xyy + wzz) + (double) value.Y * (1.0 - xxx - zzz) + (double) value.Z * (yzz - wxx) ); result.Z = (float) ( (double) value.X * (xzz - wyy) + (double) value.Y * (yzz + wxx) + (double) value.Z * (1.0 - xxx - yyy) ); result.W = 1.0f; } /// /// Creates a new that contains a transformation of 4d-vector by the specified . /// /// Source . /// The which contains rotation transformation. /// Transformed as an output parameter. public static void Transform( ref Vector4 value, ref Quaternion rotation, out Vector4 result ) { double xx = rotation.X + rotation.X; double yy = rotation.Y + rotation.Y; double zz = rotation.Z + rotation.Z; double wxx = rotation.W * xx; double wyy = rotation.W * yy; double wzz = rotation.W * zz; double xxx = rotation.X * xx; double xyy = rotation.X * yy; double xzz = rotation.X * zz; double yyy = rotation.Y * yy; double yzz = rotation.Y * zz; double zzz = rotation.Z * zz; result.X = (float) ( (double) value.X * (1.0 - yyy - zzz) + (double) value.Y * (xyy - wzz) + (double) value.Z * (xzz + wyy) ); result.Y = (float) ( (double) value.X * (xyy + wzz) + (double) value.Y * (1.0 - xxx - zzz) + (double) value.Z * (yzz - wxx) ); result.Z = (float) ( (double) value.X * (xzz - wyy) + (double) value.Y * (yzz + wxx) + (double) value.Z * (1.0 - xxx - yyy) ); result.W = value.W; } /// /// Apply transformation on all vectors within array of by the specified and places the results in an another array. /// /// Source array. /// The which contains rotation transformation. /// Destination array. public static void Transform( Vector4[] sourceArray, ref Quaternion rotation, Vector4[] destinationArray ) { if (sourceArray == null) { throw new ArgumentException("sourceArray"); } if (destinationArray == null) { throw new ArgumentException("destinationArray"); } if (destinationArray.Length < sourceArray.Length) { throw new ArgumentException( "destinationArray is too small to contain the result." ); } for (int i = 0; i < sourceArray.Length; i += 1) { Transform( ref sourceArray[i], ref rotation, out destinationArray[i] ); } } /// /// Apply transformation on vectors within array of by the specified and places the results in an another array. /// /// Source array. /// The starting index of transformation in the source array. /// The which contains rotation transformation. /// Destination array. /// The starting index in the destination array, where the first should be written. /// The number of vectors to be transformed. public static void Transform( Vector4[] sourceArray, int sourceIndex, ref Quaternion rotation, Vector4[] destinationArray, int destinationIndex, int length ) { if (sourceArray == null) { throw new ArgumentException("sourceArray"); } if (destinationArray == null) { throw new ArgumentException("destinationArray"); } if (destinationIndex + length > destinationArray.Length) { throw new ArgumentException( "destinationArray is too small to contain the result." ); } if (sourceIndex + length > sourceArray.Length) { throw new ArgumentException( "The combination of sourceIndex and length was greater than sourceArray.Length." ); } for (int i = 0; i < length; i += 1) { Transform( ref sourceArray[i + sourceIndex], ref rotation, out destinationArray[i + destinationIndex] ); } } #endregion #region Public Static Operators public static Vector4 operator -(Vector4 value) { return new Vector4(-value.X, -value.Y, -value.Z, -value.W); } public static bool operator ==(Vector4 value1, Vector4 value2) { return ( (MathHelper.WithinEpsilon(value1.W, value2.W)) && (MathHelper.WithinEpsilon(value1.X, value2.X)) && (MathHelper.WithinEpsilon(value1.Y, value2.Y)) && (MathHelper.WithinEpsilon(value1.Z, value2.Z)) ); } public static bool operator !=(Vector4 value1, Vector4 value2) { return !(value1 == value2); } public static Vector4 operator +(Vector4 value1, Vector4 value2) { value1.W += value2.W; value1.X += value2.X; value1.Y += value2.Y; value1.Z += value2.Z; return value1; } public static Vector4 operator -(Vector4 value1, Vector4 value2) { value1.W -= value2.W; value1.X -= value2.X; value1.Y -= value2.Y; value1.Z -= value2.Z; return value1; } public static Vector4 operator *(Vector4 value1, Vector4 value2) { value1.W *= value2.W; value1.X *= value2.X; value1.Y *= value2.Y; value1.Z *= value2.Z; return value1; } public static Vector4 operator *(Vector4 value1, float scaleFactor) { value1.W *= scaleFactor; value1.X *= scaleFactor; value1.Y *= scaleFactor; value1.Z *= scaleFactor; return value1; } public static Vector4 operator *(float scaleFactor, Vector4 value1) { value1.W *= scaleFactor; value1.X *= scaleFactor; value1.Y *= scaleFactor; value1.Z *= scaleFactor; return value1; } public static Vector4 operator /(Vector4 value1, Vector4 value2) { value1.W /= value2.W; value1.X /= value2.X; value1.Y /= value2.Y; value1.Z /= value2.Z; return value1; } public static Vector4 operator /(Vector4 value1, float divider) { float factor = 1f / divider; value1.W *= factor; value1.X *= factor; value1.Y *= factor; value1.Z *= factor; return value1; } #endregion } }