#region License
/* FNA - XNA4 Reimplementation for Desktop Platforms
* Copyright 2009-2016 Ethan Lee and the MonoGame Team
*
* Released under the Microsoft Public License.
* See LICENSE for details.
*/
/* Derived from code by the Mono.Xna Team (Copyright 2006).
* Released under the MIT License. See monoxna.LICENSE for details.
*/
#endregion
#region Using Statements
using System;
using System.ComponentModel;
using System.Diagnostics;
using System.Text;
using Microsoft.Xna.Framework.Design;
#endregion
namespace Microsoft.Xna.Framework
{
///
/// Describes a 3D-vector.
///
[Serializable]
[TypeConverter(typeof(Vector3Converter))]
[DebuggerDisplay("{DebugDisplayString,nq}")]
public struct Vector3 : IEquatable
{
#region Public Static Properties
///
/// Returns a with components 0, 0, 0.
///
public static Vector3 Zero
{
get
{
return zero;
}
}
///
/// Returns a with components 1, 1, 1.
///
public static Vector3 One
{
get
{
return one;
}
}
///
/// Returns a with components 1, 0, 0.
///
public static Vector3 UnitX
{
get
{
return unitX;
}
}
///
/// Returns a with components 0, 1, 0.
///
public static Vector3 UnitY
{
get
{
return unitY;
}
}
///
/// Returns a with components 0, 0, 1.
///
public static Vector3 UnitZ
{
get
{
return unitZ;
}
}
///
/// Returns a with components 0, 1, 0.
///
public static Vector3 Up
{
get
{
return up;
}
}
///
/// Returns a with components 0, -1, 0.
///
public static Vector3 Down
{
get
{
return down;
}
}
///
/// Returns a with components 1, 0, 0.
///
public static Vector3 Right
{
get
{
return right;
}
}
///
/// Returns a with components -1, 0, 0.
///
public static Vector3 Left
{
get
{
return left;
}
}
///
/// Returns a with components 0, 0, -1.
///
public static Vector3 Forward
{
get
{
return forward;
}
}
///
/// Returns a with components 0, 0, 1.
///
public static Vector3 Backward
{
get
{
return backward;
}
}
#endregion
#region Internal Properties
internal string DebugDisplayString
{
get
{
return string.Concat(
X.ToString(), " ",
Y.ToString(), " ",
Z.ToString()
);
}
}
#endregion
#region Private Static Fields
private static Vector3 zero = new Vector3(0f, 0f, 0f); // Not readonly for performance -flibit
private static readonly Vector3 one = new Vector3(1f, 1f, 1f);
private static readonly Vector3 unitX = new Vector3(1f, 0f, 0f);
private static readonly Vector3 unitY = new Vector3(0f, 1f, 0f);
private static readonly Vector3 unitZ = new Vector3(0f, 0f, 1f);
private static readonly Vector3 up = new Vector3(0f, 1f, 0f);
private static readonly Vector3 down = new Vector3(0f, -1f, 0f);
private static readonly Vector3 right = new Vector3(1f, 0f, 0f);
private static readonly Vector3 left = new Vector3(-1f, 0f, 0f);
private static readonly Vector3 forward = new Vector3(0f, 0f, -1f);
private static readonly Vector3 backward = new Vector3(0f, 0f, 1f);
#endregion
#region Public Fields
///
/// The x coordinate of this .
///
public float X;
///
/// The y coordinate of this .
///
public float Y;
///
/// The z coordinate of this .
///
public float Z;
#endregion
#region Public Constructors
///
/// Constructs a 3d vector with X, Y and Z from three values.
///
/// The x coordinate in 3d-space.
/// The y coordinate in 3d-space.
/// The z coordinate in 3d-space.
public Vector3(float x, float y, float z)
{
this.X = x;
this.Y = y;
this.Z = z;
}
///
/// Constructs a 3d vector with X, Y and Z set to the same value.
///
/// The x, y and z coordinates in 3d-space.
public Vector3(float value)
{
this.X = value;
this.Y = value;
this.Z = value;
}
///
/// Constructs a 3d vector with X, Y from and Z from a scalar.
///
/// The x and y coordinates in 3d-space.
/// The z coordinate in 3d-space.
public Vector3(Vector2 value, float z)
{
this.X = value.X;
this.Y = value.Y;
this.Z = z;
}
#endregion
#region Public Methods
///
/// Compares whether current instance is equal to specified .
///
/// The to compare.
/// true if the instances are equal; false otherwise.
public override bool Equals(object obj)
{
if (!(obj is Vector3))
{
return false;
}
Vector3 other = (Vector3) obj;
return ( (MathHelper.WithinEpsilon(X, other.X)) &&
(MathHelper.WithinEpsilon(Y, other.Y)) &&
(MathHelper.WithinEpsilon(Z, other.Z)) );
}
///
/// Compares whether current instance is equal to specified .
///
/// The to compare.
/// true if the instances are equal; false otherwise.
public bool Equals(Vector3 other)
{
return ( (MathHelper.WithinEpsilon(X, other.X)) &&
(MathHelper.WithinEpsilon(Y, other.Y)) &&
(MathHelper.WithinEpsilon(Z, other.Z)) );
}
///
/// Gets the hash code of this .
///
/// Hash code of this .
public override int GetHashCode()
{
return (int) (this.X + this.Y + this.Z);
}
///
/// Returns the length of this .
///
/// The length of this .
public float Length()
{
float result;
DistanceSquared(ref this, ref zero, out result);
return (float) Math.Sqrt(result);
}
///
/// Returns the squared length of this .
///
/// The squared length of this .
public float LengthSquared()
{
float result;
DistanceSquared(ref this, ref zero, out result);
return result;
}
///
/// Turns this to a unit vector with the same direction.
///
public void Normalize()
{
Normalize(ref this, out this);
}
///
/// Returns a representation of this in the format:
/// {X:[] Y:[] Z:[]}
///
/// A representation of this .
public override string ToString()
{
StringBuilder sb = new StringBuilder(32);
sb.Append("{X:");
sb.Append(this.X);
sb.Append(" Y:");
sb.Append(this.Y);
sb.Append(" Z:");
sb.Append(this.Z);
sb.Append("}");
return sb.ToString();
}
#endregion
#region Public Static Methods
///
/// Performs vector addition on and .
///
/// The first vector to add.
/// The second vector to add.
/// The result of the vector addition.
public static Vector3 Add(Vector3 value1, Vector3 value2)
{
value1.X += value2.X;
value1.Y += value2.Y;
value1.Z += value2.Z;
return value1;
}
///
/// Performs vector addition on and
/// , storing the result of the
/// addition in .
///
/// The first vector to add.
/// The second vector to add.
/// The result of the vector addition.
public static void Add(ref Vector3 value1, ref Vector3 value2, out Vector3 result)
{
result.X = value1.X + value2.X;
result.Y = value1.Y + value2.Y;
result.Z = value1.Z + value2.Z;
}
///
/// Creates a new that contains the cartesian coordinates of a vector specified in barycentric coordinates and relative to 3d-triangle.
///
/// The first vector of 3d-triangle.
/// The second vector of 3d-triangle.
/// The third vector of 3d-triangle.
/// Barycentric scalar b2 which represents a weighting factor towards second vector of 3d-triangle.
/// Barycentric scalar b3 which represents a weighting factor towards third vector of 3d-triangle.
/// The cartesian translation of barycentric coordinates.
public static Vector3 Barycentric(
Vector3 value1,
Vector3 value2,
Vector3 value3,
float amount1,
float amount2
) {
return new Vector3(
MathHelper.Barycentric(value1.X, value2.X, value3.X, amount1, amount2),
MathHelper.Barycentric(value1.Y, value2.Y, value3.Y, amount1, amount2),
MathHelper.Barycentric(value1.Z, value2.Z, value3.Z, amount1, amount2)
);
}
///
/// Creates a new that contains the cartesian coordinates of a vector specified in barycentric coordinates and relative to 3d-triangle.
///
/// The first vector of 3d-triangle.
/// The second vector of 3d-triangle.
/// The third vector of 3d-triangle.
/// Barycentric scalar b2 which represents a weighting factor towards second vector of 3d-triangle.
/// Barycentric scalar b3 which represents a weighting factor towards third vector of 3d-triangle.
/// The cartesian translation of barycentric coordinates as an output parameter.
public static void Barycentric(
ref Vector3 value1,
ref Vector3 value2,
ref Vector3 value3,
float amount1,
float amount2,
out Vector3 result
) {
result.X = MathHelper.Barycentric(value1.X, value2.X, value3.X, amount1, amount2);
result.Y = MathHelper.Barycentric(value1.Y, value2.Y, value3.Y, amount1, amount2);
result.Z = MathHelper.Barycentric(value1.Z, value2.Z, value3.Z, amount1, amount2);
}
///
/// Creates a new that contains CatmullRom interpolation of the specified vectors.
///
/// The first vector in interpolation.
/// The second vector in interpolation.
/// The third vector in interpolation.
/// The fourth vector in interpolation.
/// Weighting factor.
/// The result of CatmullRom interpolation.
public static Vector3 CatmullRom(
Vector3 value1,
Vector3 value2,
Vector3 value3,
Vector3 value4,
float amount
) {
return new Vector3(
MathHelper.CatmullRom(value1.X, value2.X, value3.X, value4.X, amount),
MathHelper.CatmullRom(value1.Y, value2.Y, value3.Y, value4.Y, amount),
MathHelper.CatmullRom(value1.Z, value2.Z, value3.Z, value4.Z, amount)
);
}
///
/// Creates a new that contains CatmullRom interpolation of the specified vectors.
///
/// The first vector in interpolation.
/// The second vector in interpolation.
/// The third vector in interpolation.
/// The fourth vector in interpolation.
/// Weighting factor.
/// The result of CatmullRom interpolation as an output parameter.
public static void CatmullRom(
ref Vector3 value1,
ref Vector3 value2,
ref Vector3 value3,
ref Vector3 value4,
float amount,
out Vector3 result
) {
result.X = MathHelper.CatmullRom(value1.X, value2.X, value3.X, value4.X, amount);
result.Y = MathHelper.CatmullRom(value1.Y, value2.Y, value3.Y, value4.Y, amount);
result.Z = MathHelper.CatmullRom(value1.Z, value2.Z, value3.Z, value4.Z, amount);
}
///
/// Clamps the specified value within a range.
///
/// The value to clamp.
/// The min value.
/// The max value.
/// The clamped value.
public static Vector3 Clamp(Vector3 value1, Vector3 min, Vector3 max)
{
return new Vector3(
MathHelper.Clamp(value1.X, min.X, max.X),
MathHelper.Clamp(value1.Y, min.Y, max.Y),
MathHelper.Clamp(value1.Z, min.Z, max.Z)
);
}
///
/// Clamps the specified value within a range.
///
/// The value to clamp.
/// The min value.
/// The max value.
/// The clamped value as an output parameter.
public static void Clamp(
ref Vector3 value1,
ref Vector3 min,
ref Vector3 max,
out Vector3 result
) {
result.X = MathHelper.Clamp(value1.X, min.X, max.X);
result.Y = MathHelper.Clamp(value1.Y, min.Y, max.Y);
result.Z = MathHelper.Clamp(value1.Z, min.Z, max.Z);
}
///
/// Computes the cross product of two vectors.
///
/// The first vector.
/// The second vector.
/// The cross product of two vectors.
public static Vector3 Cross(Vector3 vector1, Vector3 vector2)
{
Cross(ref vector1, ref vector2, out vector1);
return vector1;
}
///
/// Computes the cross product of two vectors.
///
/// The first vector.
/// The second vector.
/// The cross product of two vectors as an output parameter.
public static void Cross(ref Vector3 vector1, ref Vector3 vector2, out Vector3 result)
{
float x = vector1.Y * vector2.Z - vector2.Y * vector1.Z;
float y = -(vector1.X * vector2.Z - vector2.X * vector1.Z);
float z = vector1.X * vector2.Y - vector2.X * vector1.Y;
result.X = x;
result.Y = y;
result.Z = z;
}
///
/// Returns the distance between two vectors.
///
/// The first vector.
/// The second vector.
/// The distance between two vectors.
public static float Distance(Vector3 vector1, Vector3 vector2)
{
float result;
DistanceSquared(ref vector1, ref vector2, out result);
return (float) Math.Sqrt(result);
}
///
/// Returns the distance between two vectors.
///
/// The first vector.
/// The second vector.
/// The distance between two vectors as an output parameter.
public static void Distance(ref Vector3 value1, ref Vector3 value2, out float result)
{
DistanceSquared(ref value1, ref value2, out result);
result = (float) Math.Sqrt(result);
}
///
/// Returns the squared distance between two vectors.
///
/// The first vector.
/// The second vector.
/// The squared distance between two vectors.
public static float DistanceSquared(Vector3 value1, Vector3 value2)
{
return (
(value1.X - value2.X) * (value1.X - value2.X) +
(value1.Y - value2.Y) * (value1.Y - value2.Y) +
(value1.Z - value2.Z) * (value1.Z - value2.Z)
);
}
///
/// Returns the squared distance between two vectors.
///
/// The first vector.
/// The second vector.
/// The squared distance between two vectors as an output parameter.
public static void DistanceSquared(
ref Vector3 value1,
ref Vector3 value2,
out float result
) {
result = (
(value1.X - value2.X) * (value1.X - value2.X) +
(value1.Y - value2.Y) * (value1.Y - value2.Y) +
(value1.Z - value2.Z) * (value1.Z - value2.Z)
);
}
///
/// Divides the components of a by the components of another .
///
/// Source .
/// Divisor .
/// The result of dividing the vectors.
public static Vector3 Divide(Vector3 value1, Vector3 value2)
{
value1.X /= value2.X;
value1.Y /= value2.Y;
value1.Z /= value2.Z;
return value1;
}
///
/// Divides the components of a by the components of another .
///
/// Source .
/// Divisor .
/// The result of dividing the vectors as an output parameter.
public static void Divide(ref Vector3 value1, ref Vector3 value2, out Vector3 result)
{
result.X = value1.X / value2.X;
result.Y = value1.Y / value2.Y;
result.Z = value1.Z / value2.Z;
}
///
/// Divides the components of a by a scalar.
///
/// Source .
/// Divisor scalar.
/// The result of dividing a vector by a scalar.
public static Vector3 Divide(Vector3 value1, float value2)
{
float factor = 1 / value2;
value1.X *= factor;
value1.Y *= factor;
value1.Z *= factor;
return value1;
}
///
/// Divides the components of a by a scalar.
///
/// Source .
/// Divisor scalar.
/// The result of dividing a vector by a scalar as an output parameter.
public static void Divide(ref Vector3 value1, float value2, out Vector3 result)
{
float factor = 1 / value2;
result.X = value1.X * factor;
result.Y = value1.Y * factor;
result.Z = value1.Z * factor;
}
///
/// Returns a dot product of two vectors.
///
/// The first vector.
/// The second vector.
/// The dot product of two vectors.
public static float Dot(Vector3 vector1, Vector3 vector2)
{
return vector1.X * vector2.X + vector1.Y * vector2.Y + vector1.Z * vector2.Z;
}
///
/// Returns a dot product of two vectors.
///
/// The first vector.
/// The second vector.
/// The dot product of two vectors as an output parameter.
public static void Dot(ref Vector3 vector1, ref Vector3 vector2, out float result)
{
result = (
(vector1.X * vector2.X) +
(vector1.Y * vector2.Y) +
(vector1.Z * vector2.Z)
);
}
///
/// Creates a new that contains hermite spline interpolation.
///
/// The first position vector.
/// The first tangent vector.
/// The second position vector.
/// The second tangent vector.
/// Weighting factor.
/// The hermite spline interpolation vector.
public static Vector3 Hermite(
Vector3 value1,
Vector3 tangent1,
Vector3 value2,
Vector3 tangent2,
float amount
) {
Vector3 result = new Vector3();
Hermite(ref value1, ref tangent1, ref value2, ref tangent2, amount, out result);
return result;
}
///
/// Creates a new that contains hermite spline interpolation.
///
/// The first position vector.
/// The first tangent vector.
/// The second position vector.
/// The second tangent vector.
/// Weighting factor.
/// The hermite spline interpolation vector as an output parameter.
public static void Hermite(
ref Vector3 value1,
ref Vector3 tangent1,
ref Vector3 value2,
ref Vector3 tangent2,
float amount,
out Vector3 result
) {
result.X = MathHelper.Hermite(value1.X, tangent1.X, value2.X, tangent2.X, amount);
result.Y = MathHelper.Hermite(value1.Y, tangent1.Y, value2.Y, tangent2.Y, amount);
result.Z = MathHelper.Hermite(value1.Z, tangent1.Z, value2.Z, tangent2.Z, amount);
}
///
/// Creates a new that contains linear interpolation of the specified vectors.
///
/// The first vector.
/// The second vector.
/// Weighting value(between 0.0 and 1.0).
/// The result of linear interpolation of the specified vectors.
public static Vector3 Lerp(Vector3 value1, Vector3 value2, float amount)
{
return new Vector3(
MathHelper.Lerp(value1.X, value2.X, amount),
MathHelper.Lerp(value1.Y, value2.Y, amount),
MathHelper.Lerp(value1.Z, value2.Z, amount)
);
}
///
/// Creates a new that contains linear interpolation of the specified vectors.
///
/// The first vector.
/// The second vector.
/// Weighting value(between 0.0 and 1.0).
/// The result of linear interpolation of the specified vectors as an output parameter.
public static void Lerp(
ref Vector3 value1,
ref Vector3 value2,
float amount,
out Vector3 result
) {
result.X = MathHelper.Lerp(value1.X, value2.X, amount);
result.Y = MathHelper.Lerp(value1.Y, value2.Y, amount);
result.Z = MathHelper.Lerp(value1.Z, value2.Z, amount);
}
///
/// Creates a new that contains a maximal values from the two vectors.
///
/// The first vector.
/// The second vector.
/// The with maximal values from the two vectors.
public static Vector3 Max(Vector3 value1, Vector3 value2)
{
return new Vector3(
MathHelper.Max(value1.X, value2.X),
MathHelper.Max(value1.Y, value2.Y),
MathHelper.Max(value1.Z, value2.Z)
);
}
///
/// Creates a new that contains a maximal values from the two vectors.
///
/// The first vector.
/// The second vector.
/// The with maximal values from the two vectors as an output parameter.
public static void Max(ref Vector3 value1, ref Vector3 value2, out Vector3 result)
{
result.X = MathHelper.Max(value1.X, value2.X);
result.Y = MathHelper.Max(value1.Y, value2.Y);
result.Z = MathHelper.Max(value1.Z, value2.Z);
}
///
/// Creates a new that contains a minimal values from the two vectors.
///
/// The first vector.
/// The second vector.
/// The with minimal values from the two vectors.
public static Vector3 Min(Vector3 value1, Vector3 value2)
{
return new Vector3(
MathHelper.Min(value1.X, value2.X),
MathHelper.Min(value1.Y, value2.Y),
MathHelper.Min(value1.Z, value2.Z)
);
}
///
/// Creates a new that contains a minimal values from the two vectors.
///
/// The first vector.
/// The second vector.
/// The with minimal values from the two vectors as an output parameter.
public static void Min(ref Vector3 value1, ref Vector3 value2, out Vector3 result)
{
result.X = MathHelper.Min(value1.X, value2.X);
result.Y = MathHelper.Min(value1.Y, value2.Y);
result.Z = MathHelper.Min(value1.Z, value2.Z);
}
///
/// Creates a new that contains a multiplication of two vectors.
///
/// Source .
/// Source .
/// The result of the vector multiplication.
public static Vector3 Multiply(Vector3 value1, Vector3 value2)
{
value1.X *= value2.X;
value1.Y *= value2.Y;
value1.Z *= value2.Z;
return value1;
}
///
/// Creates a new that contains a multiplication of and a scalar.
///
/// Source .
/// Scalar value.
/// The result of the vector multiplication with a scalar.
public static Vector3 Multiply(Vector3 value1, float scaleFactor)
{
value1.X *= scaleFactor;
value1.Y *= scaleFactor;
value1.Z *= scaleFactor;
return value1;
}
///
/// Creates a new that contains a multiplication of and a scalar.
///
/// Source .
/// Scalar value.
/// The result of the multiplication with a scalar as an output parameter.
public static void Multiply(ref Vector3 value1, float scaleFactor, out Vector3 result)
{
result.X = value1.X * scaleFactor;
result.Y = value1.Y * scaleFactor;
result.Z = value1.Z * scaleFactor;
}
///
/// Creates a new that contains a multiplication of two vectors.
///
/// Source .
/// Source .
/// The result of the vector multiplication as an output parameter.
public static void Multiply(ref Vector3 value1, ref Vector3 value2, out Vector3 result)
{
result.X = value1.X * value2.X;
result.Y = value1.Y * value2.Y;
result.Z = value1.Z * value2.Z;
}
///
/// Creates a new that contains the specified vector inversion.
///
/// Source .
/// The result of the vector inversion.
public static Vector3 Negate(Vector3 value)
{
value = new Vector3(-value.X, -value.Y, -value.Z);
return value;
}
///
/// Creates a new that contains the specified vector inversion.
///
/// Source .
/// The result of the vector inversion as an output parameter.
public static void Negate(ref Vector3 value, out Vector3 result)
{
result.X = -value.X;
result.Y = -value.Y;
result.Z = -value.Z;
}
///
/// Creates a new that contains a normalized values from another vector.
///
/// Source .
/// Unit vector.
public static Vector3 Normalize(Vector3 value)
{
Normalize(ref value, out value);
return value;
}
///
/// Creates a new that contains a normalized values from another vector.
///
/// Source .
/// Unit vector as an output parameter.
public static void Normalize(ref Vector3 value, out Vector3 result)
{
float factor;
Distance(ref value, ref zero, out factor);
factor = 1.0f / factor;
result.X = value.X * factor;
result.Y = value.Y * factor;
result.Z = value.Z * factor;
}
///
/// Creates a new that contains reflect vector of the given vector and normal.
///
/// Source .
/// Reflection normal.
/// Reflected vector.
public static Vector3 Reflect(Vector3 vector, Vector3 normal)
{
/* I is the original array.
* N is the normal of the incident plane.
* R = I - (2 * N * ( DotProduct[ I,N] ))
*/
Vector3 reflectedVector;
// Inline the dotProduct here instead of calling method
float dotProduct = ((vector.X * normal.X) + (vector.Y * normal.Y)) +
(vector.Z * normal.Z);
reflectedVector.X = vector.X - (2.0f * normal.X) * dotProduct;
reflectedVector.Y = vector.Y - (2.0f * normal.Y) * dotProduct;
reflectedVector.Z = vector.Z - (2.0f * normal.Z) * dotProduct;
return reflectedVector;
}
///
/// Creates a new that contains reflect vector of the given vector and normal.
///
/// Source .
/// Reflection normal.
/// Reflected vector as an output parameter.
public static void Reflect(ref Vector3 vector, ref Vector3 normal, out Vector3 result)
{
/* I is the original array.
* N is the normal of the incident plane.
* R = I - (2 * N * ( DotProduct[ I,N] ))
*/
// Inline the dotProduct here instead of calling method.
float dotProduct = ((vector.X * normal.X) + (vector.Y * normal.Y)) +
(vector.Z * normal.Z);
result.X = vector.X - (2.0f * normal.X) * dotProduct;
result.Y = vector.Y - (2.0f * normal.Y) * dotProduct;
result.Z = vector.Z - (2.0f * normal.Z) * dotProduct;
}
///
/// Creates a new that contains cubic interpolation of the specified vectors.
///
/// Source .
/// Source .
/// Weighting value.
/// Cubic interpolation of the specified vectors.
public static Vector3 SmoothStep(Vector3 value1, Vector3 value2, float amount)
{
return new Vector3(
MathHelper.SmoothStep(value1.X, value2.X, amount),
MathHelper.SmoothStep(value1.Y, value2.Y, amount),
MathHelper.SmoothStep(value1.Z, value2.Z, amount)
);
}
///
/// Creates a new that contains cubic interpolation of the specified vectors.
///
/// Source .
/// Source .
/// Weighting value.
/// Cubic interpolation of the specified vectors as an output parameter.
public static void SmoothStep(
ref Vector3 value1,
ref Vector3 value2,
float amount,
out Vector3 result
) {
result.X = MathHelper.SmoothStep(value1.X, value2.X, amount);
result.Y = MathHelper.SmoothStep(value1.Y, value2.Y, amount);
result.Z = MathHelper.SmoothStep(value1.Z, value2.Z, amount);
}
///
/// Creates a new that contains subtraction of on from a another.
///
/// Source .
/// Source .
/// The result of the vector subtraction.
public static Vector3 Subtract(Vector3 value1, Vector3 value2)
{
value1.X -= value2.X;
value1.Y -= value2.Y;
value1.Z -= value2.Z;
return value1;
}
///
/// Creates a new that contains subtraction of on from a another.
///
/// Source .
/// Source .
/// The result of the vector subtraction as an output parameter.
public static void Subtract(ref Vector3 value1, ref Vector3 value2, out Vector3 result)
{
result.X = value1.X - value2.X;
result.Y = value1.Y - value2.Y;
result.Z = value1.Z - value2.Z;
}
///
/// Creates a new that contains a transformation of 3d-vector by the specified .
///
/// Source .
/// The transformation .
/// Transformed .
public static Vector3 Transform(Vector3 position, Matrix matrix)
{
Transform(ref position, ref matrix, out position);
return position;
}
///
/// Creates a new that contains a transformation of 3d-vector by the specified .
///
/// Source .
/// The transformation .
/// Transformed as an output parameter.
public static void Transform(
ref Vector3 position,
ref Matrix matrix,
out Vector3 result
) {
float x = (
(position.X * matrix.M11) +
(position.Y * matrix.M21) +
(position.Z * matrix.M31) +
matrix.M41
);
float y = (
(position.X * matrix.M12) +
(position.Y * matrix.M22) +
(position.Z * matrix.M32) +
matrix.M42
);
float z = (
(position.X * matrix.M13) +
(position.Y * matrix.M23) +
(position.Z * matrix.M33) +
matrix.M43
);
result.X = x;
result.Y = y;
result.Z = z;
}
///
/// Apply transformation on all vectors within array of by the specified and places the results in an another array.
///
/// Source array.
/// The transformation .
/// Destination array.
public static void Transform(
Vector3[] sourceArray,
ref Matrix matrix,
Vector3[] destinationArray
) {
Debug.Assert(
destinationArray.Length >= sourceArray.Length,
"The destination array is smaller than the source array."
);
/* TODO: Are there options on some platforms to implement
* a vectorized version of this?
*/
for (int i = 0; i < sourceArray.Length; i += 1)
{
Vector3 position = sourceArray[i];
destinationArray[i] = new Vector3(
(position.X * matrix.M11) + (position.Y * matrix.M21) +
(position.Z * matrix.M31) + matrix.M41,
(position.X * matrix.M12) + (position.Y * matrix.M22) +
(position.Z * matrix.M32) + matrix.M42,
(position.X * matrix.M13) + (position.Y * matrix.M23) +
(position.Z * matrix.M33) + matrix.M43
);
}
}
///
/// Apply transformation on vectors within array of by the specified and places the results in an another array.
///
/// Source array.
/// The starting index of transformation in the source array.
/// The transformation .
/// Destination array.
/// The starting index in the destination array, where the first should be written.
/// The number of vectors to be transformed.
public static void Transform(
Vector3[] sourceArray,
int sourceIndex,
ref Matrix matrix,
Vector3[] destinationArray,
int destinationIndex,
int length
) {
Debug.Assert(
sourceArray.Length - sourceIndex >= length,
"The source array is too small for the given sourceIndex and length."
);
Debug.Assert(
destinationArray.Length - destinationIndex >= length,
"The destination array is too small for " +
"the given destinationIndex and length."
);
/* TODO: Are there options on some platforms to implement a
* vectorized version of this?
*/
for (int i = 0; i < length; i += 1)
{
Vector3 position = sourceArray[sourceIndex + i];
destinationArray[destinationIndex + i] = new Vector3(
(position.X * matrix.M11) + (position.Y * matrix.M21) +
(position.Z * matrix.M31) + matrix.M41,
(position.X * matrix.M12) + (position.Y * matrix.M22) +
(position.Z * matrix.M32) + matrix.M42,
(position.X * matrix.M13) + (position.Y * matrix.M23) +
(position.Z * matrix.M33) + matrix.M43
);
}
}
///
/// Creates a new that contains a transformation of 3d-vector by the specified , representing the rotation.
///
/// Source .
/// The which contains rotation transformation.
/// Transformed .
public static Vector3 Transform(Vector3 value, Quaternion rotation)
{
Vector3 result;
Transform(ref value, ref rotation, out result);
return result;
}
///
/// Creates a new that contains a transformation of 3d-vector by the specified , representing the rotation.
///
/// Source .
/// The which contains rotation transformation.
/// Transformed as an output parameter.
public static void Transform(
ref Vector3 value,
ref Quaternion rotation,
out Vector3 result
) {
float x = 2 * (rotation.Y * value.Z - rotation.Z * value.Y);
float y = 2 * (rotation.Z * value.X - rotation.X * value.Z);
float z = 2 * (rotation.X * value.Y - rotation.Y * value.X);
result.X = value.X + x * rotation.W + (rotation.Y * z - rotation.Z * y);
result.Y = value.Y + y * rotation.W + (rotation.Z * x - rotation.X * z);
result.Z = value.Z + z * rotation.W + (rotation.X * y - rotation.Y * x);
}
///
/// Apply transformation on all vectors within array of by the specified and places the results in an another array.
///
/// Source array.
/// The which contains rotation transformation.
/// Destination array.
public static void Transform(
Vector3[] sourceArray,
ref Quaternion rotation,
Vector3[] destinationArray
) {
Debug.Assert(
destinationArray.Length >= sourceArray.Length,
"The destination array is smaller than the source array."
);
/* TODO: Are there options on some platforms to implement
* a vectorized version of this?
*/
for (int i = 0; i < sourceArray.Length; i += 1)
{
Vector3 position = sourceArray[i];
float x = 2 * (rotation.Y * position.Z - rotation.Z * position.Y);
float y = 2 * (rotation.Z * position.X - rotation.X * position.Z);
float z = 2 * (rotation.X * position.Y - rotation.Y * position.X);
destinationArray[i] = new Vector3(
position.X + x * rotation.W + (rotation.Y * z - rotation.Z * y),
position.Y + y * rotation.W + (rotation.Z * x - rotation.X * z),
position.Z + z * rotation.W + (rotation.X * y - rotation.Y * x)
);
}
}
///
/// Apply transformation on vectors within array of by the specified and places the results in an another array.
///
/// Source array.
/// The starting index of transformation in the source array.
/// The which contains rotation transformation.
/// Destination array.
/// The starting index in the destination array, where the first should be written.
/// The number of vectors to be transformed.
public static void Transform(
Vector3[] sourceArray,
int sourceIndex,
ref Quaternion rotation,
Vector3[] destinationArray,
int destinationIndex,
int length
) {
Debug.Assert(
sourceArray.Length - sourceIndex >= length,
"The source array is too small for the given sourceIndex and length."
);
Debug.Assert(
destinationArray.Length - destinationIndex >= length,
"The destination array is too small for the " +
"given destinationIndex and length."
);
/* TODO: Are there options on some platforms to implement
* a vectorized version of this?
*/
for (int i = 0; i < length; i += 1)
{
Vector3 position = sourceArray[sourceIndex + i];
float x = 2 * (rotation.Y * position.Z - rotation.Z * position.Y);
float y = 2 * (rotation.Z * position.X - rotation.X * position.Z);
float z = 2 * (rotation.X * position.Y - rotation.Y * position.X);
destinationArray[destinationIndex + i] = new Vector3(
position.X + x * rotation.W + (rotation.Y * z - rotation.Z * y),
position.Y + y * rotation.W + (rotation.Z * x - rotation.X * z),
position.Z + z * rotation.W + (rotation.X * y - rotation.Y * x)
);
}
}
///
/// Creates a new that contains a transformation of the specified normal by the specified .
///
/// Source which represents a normal vector.
/// The transformation .
/// Transformed normal.
public static Vector3 TransformNormal(Vector3 normal, Matrix matrix)
{
TransformNormal(ref normal, ref matrix, out normal);
return normal;
}
///
/// Creates a new that contains a transformation of the specified normal by the specified .
///
/// Source which represents a normal vector.
/// The transformation .
/// Transformed normal as an output parameter.
public static void TransformNormal(
ref Vector3 normal,
ref Matrix matrix,
out Vector3 result
) {
float x = (normal.X * matrix.M11) + (normal.Y * matrix.M21) + (normal.Z * matrix.M31);
float y = (normal.X * matrix.M12) + (normal.Y * matrix.M22) + (normal.Z * matrix.M32);
float z = (normal.X * matrix.M13) + (normal.Y * matrix.M23) + (normal.Z * matrix.M33);
result.X = x;
result.Y = y;
result.Z = z;
}
///
/// Apply transformation on all normals within array of by the specified and places the results in an another array.
///
/// Source array.
/// The transformation .
/// Destination array.
public static void TransformNormal(
Vector3[] sourceArray,
ref Matrix matrix,
Vector3[] destinationArray
) {
Debug.Assert(
destinationArray.Length >= sourceArray.Length,
"The destination array is smaller than the source array."
);
for (int i = 0; i < sourceArray.Length; i += 1)
{
Vector3 normal = sourceArray[i];
destinationArray[i].X = (normal.X * matrix.M11) + (normal.Y * matrix.M21) + (normal.Z * matrix.M31);
destinationArray[i].Y = (normal.X * matrix.M12) + (normal.Y * matrix.M22) + (normal.Z * matrix.M32);
destinationArray[i].Z = (normal.X * matrix.M13) + (normal.Y * matrix.M23) + (normal.Z * matrix.M33);
}
}
///
/// Apply transformation on normals within array of by the specified and places the results in an another array.
///
/// Source array.
/// The starting index of transformation in the source array.
/// The transformation .
/// Destination array.
/// The starting index in the destination array, where the first should be written.
/// The number of normals to be transformed.
public static void TransformNormal(
Vector3[] sourceArray,
int sourceIndex,
ref Matrix matrix,
Vector3[] destinationArray,
int destinationIndex,
int length
) {
if (sourceArray == null)
{
throw new ArgumentNullException("sourceArray");
}
if (destinationArray == null)
{
throw new ArgumentNullException("destinationArray");
}
if ((sourceIndex + length) > sourceArray.Length)
{
throw new ArgumentException(
"the combination of sourceIndex and " +
"length was greater than sourceArray.Length"
);
}
if ((destinationIndex + length) > destinationArray.Length)
{
throw new ArgumentException(
"destinationArray is too small to " +
"contain the result"
);
}
for (int i = 0; i < length; i += 1)
{
Vector3 normal = sourceArray[i + sourceIndex];
destinationArray[i + destinationIndex].X = (
(normal.X * matrix.M11) +
(normal.Y * matrix.M21) +
(normal.Z * matrix.M31)
);
destinationArray[i + destinationIndex].Y = (
(normal.X * matrix.M12) +
(normal.Y * matrix.M22) +
(normal.Z * matrix.M32)
);
destinationArray[i + destinationIndex].Z = (
(normal.X * matrix.M13) +
(normal.Y * matrix.M23) +
(normal.Z * matrix.M33)
);
}
}
#endregion
#region Public Static Operators
///
/// Compares whether two instances are equal.
///
/// instance on the left of the equal sign.
/// instance on the right of the equal sign.
/// true if the instances are equal; false otherwise.
public static bool operator ==(Vector3 value1, Vector3 value2)
{
return ( (MathHelper.WithinEpsilon(value1.X, value2.X)) &&
(MathHelper.WithinEpsilon(value1.Y, value2.Y)) &&
(MathHelper.WithinEpsilon(value1.Z, value2.Z)) );
}
///
/// Compares whether two instances are not equal.
///
/// instance on the left of the not equal sign.
/// instance on the right of the not equal sign.
/// true if the instances are not equal; false otherwise.
public static bool operator !=(Vector3 value1, Vector3 value2)
{
return !(value1 == value2);
}
///
/// Adds two vectors.
///
/// Source on the left of the add sign.
/// Source on the right of the add sign.
/// Sum of the vectors.
public static Vector3 operator +(Vector3 value1, Vector3 value2)
{
value1.X += value2.X;
value1.Y += value2.Y;
value1.Z += value2.Z;
return value1;
}
///
/// Inverts values in the specified .
///
/// Source on the right of the sub sign.
/// Result of the inversion.
public static Vector3 operator -(Vector3 value)
{
value = new Vector3(-value.X, -value.Y, -value.Z);
return value;
}
///
/// Subtracts a from a .
///
/// Source on the left of the sub sign.
/// Source on the right of the sub sign.
/// Result of the vector subtraction.
public static Vector3 operator -(Vector3 value1, Vector3 value2)
{
value1.X -= value2.X;
value1.Y -= value2.Y;
value1.Z -= value2.Z;
return value1;
}
///
/// Multiplies the components of two vectors by each other.
///
/// Source on the left of the mul sign.
/// Source on the right of the mul sign.
/// Result of the vector multiplication.
public static Vector3 operator *(Vector3 value1, Vector3 value2)
{
value1.X *= value2.X;
value1.Y *= value2.Y;
value1.Z *= value2.Z;
return value1;
}
///
/// Multiplies the components of vector by a scalar.
///
/// Source on the left of the mul sign.
/// Scalar value on the right of the mul sign.
/// Result of the vector multiplication with a scalar.
public static Vector3 operator *(Vector3 value, float scaleFactor)
{
value.X *= scaleFactor;
value.Y *= scaleFactor;
value.Z *= scaleFactor;
return value;
}
///
/// Multiplies the components of vector by a scalar.
///
/// Scalar value on the left of the mul sign.
/// Source on the right of the mul sign.
/// Result of the vector multiplication with a scalar.
public static Vector3 operator *(float scaleFactor, Vector3 value)
{
value.X *= scaleFactor;
value.Y *= scaleFactor;
value.Z *= scaleFactor;
return value;
}
///
/// Divides the components of a by the components of another .
///
/// Source on the left of the div sign.
/// Divisor on the right of the div sign.
/// The result of dividing the vectors.
public static Vector3 operator /(Vector3 value1, Vector3 value2)
{
value1.X /= value2.X;
value1.Y /= value2.Y;
value1.Z /= value2.Z;
return value1;
}
///
/// Divides the components of a by a scalar.
///
/// Source on the left of the div sign.
/// Divisor scalar on the right of the div sign.
/// The result of dividing a vector by a scalar.
public static Vector3 operator /(Vector3 value, float divider)
{
float factor = 1 / divider;
value.X *= factor;
value.Y *= factor;
value.Z *= factor;
return value;
}
#endregion
}
}