#region License
/* FNA - XNA4 Reimplementation for Desktop Platforms
* Copyright 2009-2016 Ethan Lee and the MonoGame Team
*
* Released under the Microsoft Public License.
* See LICENSE for details.
*/
/* Derived from code by the Mono.Xna Team (Copyright 2006).
* Released under the MIT License. See monoxna.LICENSE for details.
*/
#endregion
#region Using Statements
using System;
using System.ComponentModel;
using System.Diagnostics;
using Microsoft.Xna.Framework.Design;
#endregion
namespace Microsoft.Xna.Framework
{
///
/// Describes a 4D-vector.
///
[Serializable]
[TypeConverter(typeof(Vector4Converter))]
[DebuggerDisplay("{DebugDisplayString,nq}")]
public struct Vector4 : IEquatable
{
#region Public Static Properties
///
/// Returns a with components 0, 0, 0, 0.
///
public static Vector4 Zero
{
get
{
return zero;
}
}
///
/// Returns a with components 1, 1, 1, 1.
///
public static Vector4 One
{
get
{
return unit;
}
}
///
/// Returns a with components 1, 0, 0, 0.
///
public static Vector4 UnitX
{
get
{
return unitX;
}
}
///
/// Returns a with components 0, 1, 0, 0.
///
public static Vector4 UnitY
{
get
{
return unitY;
}
}
///
/// Returns a with components 0, 0, 1, 0.
///
public static Vector4 UnitZ
{
get
{
return unitZ;
}
}
///
/// Returns a with components 0, 0, 0, 1.
///
public static Vector4 UnitW
{
get
{
return unitW;
}
}
#endregion
#region Internal Properties
internal string DebugDisplayString
{
get
{
return string.Concat(
X.ToString(), " ",
Y.ToString(), " ",
Z.ToString(), " ",
W.ToString()
);
}
}
#endregion
#region Public Fields
///
/// The x coordinate of this .
///
public float X;
///
/// The y coordinate of this .
///
public float Y;
///
/// The z coordinate of this .
///
public float Z;
///
/// The w coordinate of this .
///
public float W;
#endregion
#region Private Static Fields
private static Vector4 zero = new Vector4(); // Not readonly for performance -flibit
private static readonly Vector4 unit = new Vector4(1f, 1f, 1f, 1f);
private static readonly Vector4 unitX = new Vector4(1f, 0f, 0f, 0f);
private static readonly Vector4 unitY = new Vector4(0f, 1f, 0f, 0f);
private static readonly Vector4 unitZ = new Vector4(0f, 0f, 1f, 0f);
private static readonly Vector4 unitW = new Vector4(0f, 0f, 0f, 1f);
#endregion
#region Public Constructors
///
/// Constructs a 3d vector with X, Y, Z and W from four values.
///
/// The x coordinate in 4d-space.
/// The y coordinate in 4d-space.
/// The z coordinate in 4d-space.
/// The w coordinate in 4d-space.
public Vector4(float x, float y, float z, float w)
{
this.X = x;
this.Y = y;
this.Z = z;
this.W = w;
}
///
/// Constructs a 3d vector with X and Z from and Z and W from the scalars.
///
/// The x and y coordinates in 4d-space.
/// The z coordinate in 4d-space.
/// The w coordinate in 4d-space.
public Vector4(Vector2 value, float z, float w)
{
this.X = value.X;
this.Y = value.Y;
this.Z = z;
this.W = w;
}
///
/// Constructs a 3d vector with X, Y, Z from and W from a scalar.
///
/// The x, y and z coordinates in 4d-space.
/// The w coordinate in 4d-space.
public Vector4(Vector3 value, float w)
{
this.X = value.X;
this.Y = value.Y;
this.Z = value.Z;
this.W = w;
}
///
/// Constructs a 4d vector with X, Y, Z and W set to the same value.
///
/// The x, y, z and w coordinates in 4d-space.
public Vector4(float value)
{
this.X = value;
this.Y = value;
this.Z = value;
this.W = value;
}
#endregion
#region Public Methods
///
/// Compares whether current instance is equal to specified .
///
/// The to compare.
/// true if the instances are equal; false otherwise.
public override bool Equals(object obj)
{
return (obj is Vector4) ? this == (Vector4) obj : false;
}
///
/// Compares whether current instance is equal to specified .
///
/// The to compare.
/// true if the instances are equal; false otherwise.
public bool Equals(Vector4 other)
{
return ( (MathHelper.WithinEpsilon(this.W, other.W)) &&
(MathHelper.WithinEpsilon(this.X, other.X)) &&
(MathHelper.WithinEpsilon(this.Y, other.Y)) &&
(MathHelper.WithinEpsilon(this.Z, other.Z)) );
}
///
/// Gets the hash code of this .
///
/// Hash code of this .
public override int GetHashCode()
{
return (int) (this.W + this.X + this.Y + this.Y);
}
///
/// Returns the length of this .
///
/// The length of this .
public float Length()
{
float result;
DistanceSquared(ref this, ref zero, out result);
return (float) Math.Sqrt(result);
}
///
/// Returns the squared length of this .
///
/// The squared length of this .
public float LengthSquared()
{
float result;
DistanceSquared(ref this, ref zero, out result);
return result;
}
///
/// Turns this to a unit vector with the same direction.
///
public void Normalize()
{
Normalize(ref this, out this);
}
public override string ToString()
{
return (
"{X:" + X.ToString() +
" Y:" + Y.ToString() +
" Z:" + Z.ToString() +
" W:" + W.ToString() + "}"
);
}
#endregion
#region Public Static Methods
///
/// Performs vector addition on and .
///
/// The first vector to add.
/// The second vector to add.
/// The result of the vector addition.
public static Vector4 Add(Vector4 value1, Vector4 value2)
{
value1.W += value2.W;
value1.X += value2.X;
value1.Y += value2.Y;
value1.Z += value2.Z;
return value1;
}
///
/// Performs vector addition on and
/// , storing the result of the
/// addition in .
///
/// The first vector to add.
/// The second vector to add.
/// The result of the vector addition.
public static void Add(ref Vector4 value1, ref Vector4 value2, out Vector4 result)
{
result.W = value1.W + value2.W;
result.X = value1.X + value2.X;
result.Y = value1.Y + value2.Y;
result.Z = value1.Z + value2.Z;
}
///
/// Creates a new that contains the cartesian coordinates of a vector specified in barycentric coordinates and relative to 4d-triangle.
///
/// The first vector of 4d-triangle.
/// The second vector of 4d-triangle.
/// The third vector of 4d-triangle.
/// Barycentric scalar b2 which represents a weighting factor towards second vector of 4d-triangle.
/// Barycentric scalar b3 which represents a weighting factor towards third vector of 4d-triangle.
/// The cartesian translation of barycentric coordinates.
public static Vector4 Barycentric(
Vector4 value1,
Vector4 value2,
Vector4 value3,
float amount1,
float amount2
) {
return new Vector4(
MathHelper.Barycentric(value1.X, value2.X, value3.X, amount1, amount2),
MathHelper.Barycentric(value1.Y, value2.Y, value3.Y, amount1, amount2),
MathHelper.Barycentric(value1.Z, value2.Z, value3.Z, amount1, amount2),
MathHelper.Barycentric(value1.W, value2.W, value3.W, amount1, amount2)
);
}
///
/// Creates a new that contains the cartesian coordinates of a vector specified in barycentric coordinates and relative to 4d-triangle.
///
/// The first vector of 4d-triangle.
/// The second vector of 4d-triangle.
/// The third vector of 4d-triangle.
/// Barycentric scalar b2 which represents a weighting factor towards second vector of 4d-triangle.
/// Barycentric scalar b3 which represents a weighting factor towards third vector of 4d-triangle.
/// The cartesian translation of barycentric coordinates as an output parameter.
public static void Barycentric(
ref Vector4 value1,
ref Vector4 value2,
ref Vector4 value3,
float amount1,
float amount2,
out Vector4 result
) {
result.X = MathHelper.Barycentric(value1.X, value2.X, value3.X, amount1, amount2);
result.Y = MathHelper.Barycentric(value1.Y, value2.Y, value3.Y, amount1, amount2);
result.Z = MathHelper.Barycentric(value1.Z, value2.Z, value3.Z, amount1, amount2);
result.W = MathHelper.Barycentric(value1.W, value2.W, value3.W, amount1, amount2);
}
///
/// Creates a new that contains CatmullRom interpolation of the specified vectors.
///
/// The first vector in interpolation.
/// The second vector in interpolation.
/// The third vector in interpolation.
/// The fourth vector in interpolation.
/// Weighting factor.
/// The result of CatmullRom interpolation.
public static Vector4 CatmullRom(
Vector4 value1,
Vector4 value2,
Vector4 value3,
Vector4 value4,
float amount
) {
return new Vector4(
MathHelper.CatmullRom(value1.X, value2.X, value3.X, value4.X, amount),
MathHelper.CatmullRom(value1.Y, value2.Y, value3.Y, value4.Y, amount),
MathHelper.CatmullRom(value1.Z, value2.Z, value3.Z, value4.Z, amount),
MathHelper.CatmullRom(value1.W, value2.W, value3.W, value4.W, amount)
);
}
///
/// Creates a new that contains CatmullRom interpolation of the specified vectors.
///
/// The first vector in interpolation.
/// The second vector in interpolation.
/// The third vector in interpolation.
/// The fourth vector in interpolation.
/// Weighting factor.
/// The result of CatmullRom interpolation as an output parameter.
public static void CatmullRom(
ref Vector4 value1,
ref Vector4 value2,
ref Vector4 value3,
ref Vector4 value4,
float amount,
out Vector4 result
) {
result.X = MathHelper.CatmullRom(value1.X, value2.X, value3.X, value4.X, amount);
result.Y = MathHelper.CatmullRom(value1.Y, value2.Y, value3.Y, value4.Y, amount);
result.Z = MathHelper.CatmullRom(value1.Z, value2.Z, value3.Z, value4.Z, amount);
result.W = MathHelper.CatmullRom(value1.W, value2.W, value3.W, value4.W, amount);
}
///
/// Clamps the specified value within a range.
///
/// The value to clamp.
/// The min value.
/// The max value.
/// The clamped value.
public static Vector4 Clamp(Vector4 value1, Vector4 min, Vector4 max)
{
return new Vector4(
MathHelper.Clamp(value1.X, min.X, max.X),
MathHelper.Clamp(value1.Y, min.Y, max.Y),
MathHelper.Clamp(value1.Z, min.Z, max.Z),
MathHelper.Clamp(value1.W, min.W, max.W)
);
}
///
/// Clamps the specified value within a range.
///
/// The value to clamp.
/// The min value.
/// The max value.
/// The clamped value as an output parameter.
public static void Clamp(
ref Vector4 value1,
ref Vector4 min,
ref Vector4 max,
out Vector4 result
) {
result.X = MathHelper.Clamp(value1.X, min.X, max.X);
result.Y = MathHelper.Clamp(value1.Y, min.Y, max.Y);
result.Z = MathHelper.Clamp(value1.Z, min.Z, max.Z);
result.W = MathHelper.Clamp(value1.W, min.W, max.W);
}
///
/// Returns the distance between two vectors.
///
/// The first vector.
/// The second vector.
/// The distance between two vectors.
public static float Distance(Vector4 value1, Vector4 value2)
{
return (float) Math.Sqrt(DistanceSquared(value1, value2));
}
///
/// Returns the distance between two vectors.
///
/// The first vector.
/// The second vector.
/// The distance between two vectors as an output parameter.
public static void Distance(ref Vector4 value1, ref Vector4 value2, out float result)
{
result = (float) Math.Sqrt(DistanceSquared(value1, value2));
}
///
/// Returns the squared distance between two vectors.
///
/// The first vector.
/// The second vector.
/// The squared distance between two vectors.
public static float DistanceSquared(Vector4 value1, Vector4 value2)
{
return (
(value1.W - value2.W) * (value1.W - value2.W) +
(value1.X - value2.X) * (value1.X - value2.X) +
(value1.Y - value2.Y) * (value1.Y - value2.Y) +
(value1.Z - value2.Z) * (value1.Z - value2.Z)
);
}
///
/// Returns the squared distance between two vectors.
///
/// The first vector.
/// The second vector.
/// The squared distance between two vectors as an output parameter.
public static void DistanceSquared(
ref Vector4 value1,
ref Vector4 value2,
out float result
) {
result = (
(value1.W - value2.W) * (value1.W - value2.W) +
(value1.X - value2.X) * (value1.X - value2.X) +
(value1.Y - value2.Y) * (value1.Y - value2.Y) +
(value1.Z - value2.Z) * (value1.Z - value2.Z)
);
}
///
/// Divides the components of a by the components of another .
///
/// Source .
/// Divisor .
/// The result of dividing the vectors.
public static Vector4 Divide(Vector4 value1, Vector4 value2)
{
value1.W /= value2.W;
value1.X /= value2.X;
value1.Y /= value2.Y;
value1.Z /= value2.Z;
return value1;
}
///
/// Divides the components of a by a scalar.
///
/// Source .
/// Divisor scalar.
/// The result of dividing a vector by a scalar.
public static Vector4 Divide(Vector4 value1, float divider)
{
float factor = 1f / divider;
value1.W *= factor;
value1.X *= factor;
value1.Y *= factor;
value1.Z *= factor;
return value1;
}
///
/// Divides the components of a by a scalar.
///
/// Source .
/// Divisor scalar.
/// The result of dividing a vector by a scalar as an output parameter.
public static void Divide(ref Vector4 value1, float divider, out Vector4 result)
{
float factor = 1f / divider;
result.W = value1.W * factor;
result.X = value1.X * factor;
result.Y = value1.Y * factor;
result.Z = value1.Z * factor;
}
///
/// Divides the components of a by the components of another .
///
/// Source .
/// Divisor .
/// The result of dividing the vectors as an output parameter.
public static void Divide(
ref Vector4 value1,
ref Vector4 value2,
out Vector4 result
) {
result.W = value1.W / value2.W;
result.X = value1.X / value2.X;
result.Y = value1.Y / value2.Y;
result.Z = value1.Z / value2.Z;
}
///
/// Returns a dot product of two vectors.
///
/// The first vector.
/// The second vector.
/// The dot product of two vectors.
public static float Dot(Vector4 vector1, Vector4 vector2)
{
return (
vector1.X * vector2.X +
vector1.Y * vector2.Y +
vector1.Z * vector2.Z +
vector1.W * vector2.W
);
}
///
/// Returns a dot product of two vectors.
///
/// The first vector.
/// The second vector.
/// The dot product of two vectors as an output parameter.
public static void Dot(ref Vector4 vector1, ref Vector4 vector2, out float result)
{
result = (
(vector1.X * vector2.X) +
(vector1.Y * vector2.Y) +
(vector1.Z * vector2.Z) +
(vector1.W * vector2.W)
);
}
///
/// Creates a new that contains hermite spline interpolation.
///
/// The first position vector.
/// The first tangent vector.
/// The second position vector.
/// The second tangent vector.
/// Weighting factor.
/// The hermite spline interpolation vector.
public static Vector4 Hermite(
Vector4 value1,
Vector4 tangent1,
Vector4 value2,
Vector4 tangent2,
float amount
) {
return new Vector4(
MathHelper.Hermite(value1.W, tangent1.W, value2.W, tangent2.W, amount),
MathHelper.Hermite(value1.X, tangent1.X, value2.X, tangent2.X, amount),
MathHelper.Hermite(value1.Y, tangent1.Y, value2.Y, tangent2.Y, amount),
MathHelper.Hermite(value1.Z, tangent1.Z, value2.Z, tangent2.Z, amount)
);
}
///
/// Creates a new that contains hermite spline interpolation.
///
/// The first position vector.
/// The first tangent vector.
/// The second position vector.
/// The second tangent vector.
/// Weighting factor.
/// The hermite spline interpolation vector as an output parameter.
public static void Hermite(
ref Vector4 value1,
ref Vector4 tangent1,
ref Vector4 value2,
ref Vector4 tangent2,
float amount,
out Vector4 result
) {
result.W = MathHelper.Hermite(value1.W, tangent1.W, value2.W, tangent2.W, amount);
result.X = MathHelper.Hermite(value1.X, tangent1.X, value2.X, tangent2.X, amount);
result.Y = MathHelper.Hermite(value1.Y, tangent1.Y, value2.Y, tangent2.Y, amount);
result.Z = MathHelper.Hermite(value1.Z, tangent1.Z, value2.Z, tangent2.Z, amount);
}
///
/// Creates a new that contains linear interpolation of the specified vectors.
///
/// The first vector.
/// The second vector.
/// Weighting value(between 0.0 and 1.0).
/// The result of linear interpolation of the specified vectors.
public static Vector4 Lerp(Vector4 value1, Vector4 value2, float amount)
{
return new Vector4(
MathHelper.Lerp(value1.X, value2.X, amount),
MathHelper.Lerp(value1.Y, value2.Y, amount),
MathHelper.Lerp(value1.Z, value2.Z, amount),
MathHelper.Lerp(value1.W, value2.W, amount)
);
}
///
/// Creates a new that contains linear interpolation of the specified vectors.
///
/// The first vector.
/// The second vector.
/// Weighting value(between 0.0 and 1.0).
/// The result of linear interpolation of the specified vectors as an output parameter.
public static void Lerp(
ref Vector4 value1,
ref Vector4 value2,
float amount,
out Vector4 result
) {
result.X = MathHelper.Lerp(value1.X, value2.X, amount);
result.Y = MathHelper.Lerp(value1.Y, value2.Y, amount);
result.Z = MathHelper.Lerp(value1.Z, value2.Z, amount);
result.W = MathHelper.Lerp(value1.W, value2.W, amount);
}
///
/// Creates a new that contains a maximal values from the two vectors.
///
/// The first vector.
/// The second vector.
/// The with maximal values from the two vectors.
public static Vector4 Max(Vector4 value1, Vector4 value2)
{
return new Vector4(
MathHelper.Max(value1.X, value2.X),
MathHelper.Max(value1.Y, value2.Y),
MathHelper.Max(value1.Z, value2.Z),
MathHelper.Max(value1.W, value2.W)
);
}
///
/// Creates a new that contains a maximal values from the two vectors.
///
/// The first vector.
/// The second vector.
/// The with maximal values from the two vectors as an output parameter.
public static void Max(ref Vector4 value1, ref Vector4 value2, out Vector4 result)
{
result.X = MathHelper.Max(value1.X, value2.X);
result.Y = MathHelper.Max(value1.Y, value2.Y);
result.Z = MathHelper.Max(value1.Z, value2.Z);
result.W = MathHelper.Max(value1.W, value2.W);
}
///
/// Creates a new that contains a minimal values from the two vectors.
///
/// The first vector.
/// The second vector.
/// The with minimal values from the two vectors.
public static Vector4 Min(Vector4 value1, Vector4 value2)
{
return new Vector4(
MathHelper.Min(value1.X, value2.X),
MathHelper.Min(value1.Y, value2.Y),
MathHelper.Min(value1.Z, value2.Z),
MathHelper.Min(value1.W, value2.W)
);
}
///
/// Creates a new that contains a minimal values from the two vectors.
///
/// The first vector.
/// The second vector.
/// The with minimal values from the two vectors as an output parameter.
public static void Min(ref Vector4 value1, ref Vector4 value2, out Vector4 result)
{
result.X = MathHelper.Min(value1.X, value2.X);
result.Y = MathHelper.Min(value1.Y, value2.Y);
result.Z = MathHelper.Min(value1.Z, value2.Z);
result.W = MathHelper.Min(value1.W, value2.W);
}
///
/// Creates a new that contains a multiplication of two vectors.
///
/// Source .
/// Source .
/// The result of the vector multiplication.
public static Vector4 Multiply(Vector4 value1, Vector4 value2)
{
value1.W *= value2.W;
value1.X *= value2.X;
value1.Y *= value2.Y;
value1.Z *= value2.Z;
return value1;
}
///
/// Creates a new that contains a multiplication of and a scalar.
///
/// Source .
/// Scalar value.
/// The result of the vector multiplication with a scalar.
public static Vector4 Multiply(Vector4 value1, float scaleFactor)
{
value1.W *= scaleFactor;
value1.X *= scaleFactor;
value1.Y *= scaleFactor;
value1.Z *= scaleFactor;
return value1;
}
///
/// Creates a new that contains a multiplication of and a scalar.
///
/// Source .
/// Scalar value.
/// The result of the multiplication with a scalar as an output parameter.
public static void Multiply(ref Vector4 value1, float scaleFactor, out Vector4 result)
{
result.W = value1.W * scaleFactor;
result.X = value1.X * scaleFactor;
result.Y = value1.Y * scaleFactor;
result.Z = value1.Z * scaleFactor;
}
///
/// Creates a new that contains a multiplication of two vectors.
///
/// Source .
/// Source .
/// The result of the vector multiplication as an output parameter.
public static void Multiply(ref Vector4 value1, ref Vector4 value2, out Vector4 result)
{
result.W = value1.W * value2.W;
result.X = value1.X * value2.X;
result.Y = value1.Y * value2.Y;
result.Z = value1.Z * value2.Z;
}
///
/// Creates a new that contains the specified vector inversion.
///
/// Source .
/// The result of the vector inversion.
public static Vector4 Negate(Vector4 value)
{
value = new Vector4(-value.X, -value.Y, -value.Z, -value.W);
return value;
}
///
/// Creates a new that contains the specified vector inversion.
///
/// Source .
/// The result of the vector inversion as an output parameter.
public static void Negate(ref Vector4 value, out Vector4 result)
{
result.X = -value.X;
result.Y = -value.Y;
result.Z = -value.Z;
result.W = -value.W;
}
///
/// Creates a new that contains a normalized values from another vector.
///
/// Source .
/// Unit vector.
public static Vector4 Normalize(Vector4 vector)
{
Normalize(ref vector, out vector);
return vector;
}
///
/// Creates a new that contains a normalized values from another vector.
///
/// Source .
/// Unit vector as an output parameter.
public static void Normalize(ref Vector4 vector, out Vector4 result)
{
float factor;
DistanceSquared(ref vector, ref zero, out factor);
factor = 1f / (float) Math.Sqrt(factor);
result.W = vector.W * factor;
result.X = vector.X * factor;
result.Y = vector.Y * factor;
result.Z = vector.Z * factor;
}
///
/// Creates a new that contains cubic interpolation of the specified vectors.
///
/// Source .
/// Source .
/// Weighting value.
/// Cubic interpolation of the specified vectors.
public static Vector4 SmoothStep(Vector4 value1, Vector4 value2, float amount)
{
return new Vector4(
MathHelper.SmoothStep(value1.X, value2.X, amount),
MathHelper.SmoothStep(value1.Y, value2.Y, amount),
MathHelper.SmoothStep(value1.Z, value2.Z, amount),
MathHelper.SmoothStep(value1.W, value2.W, amount)
);
}
///
/// Creates a new that contains cubic interpolation of the specified vectors.
///
/// Source .
/// Source .
/// Weighting value.
/// Cubic interpolation of the specified vectors as an output parameter.
public static void SmoothStep(
ref Vector4 value1,
ref Vector4 value2,
float amount,
out Vector4 result
) {
result.X = MathHelper.SmoothStep(value1.X, value2.X, amount);
result.Y = MathHelper.SmoothStep(value1.Y, value2.Y, amount);
result.Z = MathHelper.SmoothStep(value1.Z, value2.Z, amount);
result.W = MathHelper.SmoothStep(value1.W, value2.W, amount);
}
///
/// Creates a new that contains subtraction of on from a another.
///
/// Source .
/// Source .
/// The result of the vector subtraction.
public static Vector4 Subtract(Vector4 value1, Vector4 value2)
{
value1.W -= value2.W;
value1.X -= value2.X;
value1.Y -= value2.Y;
value1.Z -= value2.Z;
return value1;
}
///
/// Creates a new that contains subtraction of on from a another.
///
/// Source .
/// Source .
/// The result of the vector subtraction as an output parameter.
public static void Subtract(ref Vector4 value1, ref Vector4 value2, out Vector4 result)
{
result.W = value1.W - value2.W;
result.X = value1.X - value2.X;
result.Y = value1.Y - value2.Y;
result.Z = value1.Z - value2.Z;
}
///
/// Creates a new that contains a transformation of 2d-vector by the specified .
///
/// Source .
/// The transformation .
/// Transformed .
public static Vector4 Transform(Vector2 position, Matrix matrix)
{
Vector4 result;
Transform(ref position, ref matrix, out result);
return result;
}
///
/// Creates a new that contains a transformation of 3d-vector by the specified .
///
/// Source .
/// The transformation .
/// Transformed .
public static Vector4 Transform(Vector3 position, Matrix matrix)
{
Vector4 result;
Transform(ref position, ref matrix, out result);
return result;
}
///
/// Creates a new that contains a transformation of 4d-vector by the specified .
///
/// Source .
/// The transformation .
/// Transformed .
public static Vector4 Transform(Vector4 vector, Matrix matrix)
{
Transform(ref vector, ref matrix, out vector);
return vector;
}
///
/// Creates a new that contains a transformation of 2d-vector by the specified .
///
/// Source .
/// The transformation .
/// Transformed as an output parameter.
public static void Transform(ref Vector2 position, ref Matrix matrix, out Vector4 result)
{
result = new Vector4(
(position.X * matrix.M11) + (position.Y * matrix.M21) + matrix.M41,
(position.X * matrix.M12) + (position.Y * matrix.M22) + matrix.M42,
(position.X * matrix.M13) + (position.Y * matrix.M23) + matrix.M43,
(position.X * matrix.M14) + (position.Y * matrix.M24) + matrix.M44
);
}
///
/// Creates a new that contains a transformation of 3d-vector by the specified .
///
/// Source .
/// The transformation .
/// Transformed as an output parameter.
public static void Transform(ref Vector3 position, ref Matrix matrix, out Vector4 result)
{
float x = (
(position.X * matrix.M11) +
(position.Y * matrix.M21) +
(position.Z * matrix.M31) +
matrix.M41
);
float y = (
(position.X * matrix.M12) +
(position.Y * matrix.M22) +
(position.Z * matrix.M32) +
matrix.M42
);
float z = (
(position.X * matrix.M13) +
(position.Y * matrix.M23) +
(position.Z * matrix.M33) +
matrix.M43
);
float w = (
(position.X * matrix.M14) +
(position.Y * matrix.M24) +
(position.Z * matrix.M34) +
matrix.M44
);
result.X = x;
result.Y = y;
result.Z = z;
result.W = w;
}
///
/// Creates a new that contains a transformation of 4d-vector by the specified .
///
/// Source .
/// The transformation .
/// Transformed as an output parameter.
public static void Transform(ref Vector4 vector, ref Matrix matrix, out Vector4 result)
{
float x = (
(vector.X * matrix.M11) +
(vector.Y * matrix.M21) +
(vector.Z * matrix.M31) +
(vector.W * matrix.M41)
);
float y = (
(vector.X * matrix.M12) +
(vector.Y * matrix.M22) +
(vector.Z * matrix.M32) +
(vector.W * matrix.M42)
);
float z = (
(vector.X * matrix.M13) +
(vector.Y * matrix.M23) +
(vector.Z * matrix.M33) +
(vector.W * matrix.M43)
);
float w = (
(vector.X * matrix.M14) +
(vector.Y * matrix.M24) +
(vector.Z * matrix.M34) +
(vector.W * matrix.M44)
);
result.X = x;
result.Y = y;
result.Z = z;
result.W = w;
}
///
/// Apply transformation on all vectors within array of by the specified and places the results in an another array.
///
/// Source array.
/// The transformation .
/// Destination array.
public static void Transform(
Vector4[] sourceArray,
ref Matrix matrix,
Vector4[] destinationArray
) {
if (sourceArray == null)
{
throw new ArgumentNullException("sourceArray");
}
if (destinationArray == null)
{
throw new ArgumentNullException("destinationArray");
}
if (destinationArray.Length < sourceArray.Length)
{
throw new ArgumentException(
"destinationArray is too small to contain the result."
);
}
for (int i = 0; i < sourceArray.Length; i += 1)
{
Transform(
ref sourceArray[i],
ref matrix,
out destinationArray[i]
);
}
}
///
/// Apply transformation on vectors within array of by the specified and places the results in an another array.
///
/// Source array.
/// The starting index of transformation in the source array.
/// The transformation .
/// Destination array.
/// The starting index in the destination array, where the first should be written.
/// The number of vectors to be transformed.
public static void Transform(
Vector4[] sourceArray,
int sourceIndex,
ref Matrix matrix,
Vector4[] destinationArray,
int destinationIndex,
int length
) {
if (sourceArray == null)
{
throw new ArgumentNullException("sourceArray");
}
if (destinationArray == null)
{
throw new ArgumentNullException("destinationArray");
}
if (destinationIndex + length > destinationArray.Length)
{
throw new ArgumentException(
"destinationArray is too small to contain the result."
);
}
if (sourceIndex + length > sourceArray.Length)
{
throw new ArgumentException(
"The combination of sourceIndex and length was greater than sourceArray.Length."
);
}
for (int i = 0; i < length; i += 1)
{
Transform(
ref sourceArray[i + sourceIndex],
ref matrix,
out destinationArray[i + destinationIndex]
);
}
}
///
/// Creates a new that contains a transformation of 2d-vector by the specified .
///
/// Source .
/// The which contains rotation transformation.
/// Transformed .
public static Vector4 Transform(Vector2 value, Quaternion rotation)
{
Vector4 result;
Transform(ref value, ref rotation, out result);
return result;
}
///
/// Creates a new that contains a transformation of 3d-vector by the specified .
///
/// Source .
/// The which contains rotation transformation.
/// Transformed .
public static Vector4 Transform(Vector3 value, Quaternion rotation)
{
Vector4 result;
Transform(ref value, ref rotation, out result);
return result;
}
///
/// Creates a new that contains a transformation of 4d-vector by the specified .
///
/// Source .
/// The which contains rotation transformation.
/// Transformed .
public static Vector4 Transform(Vector4 value, Quaternion rotation)
{
Vector4 result;
Transform(ref value, ref rotation, out result);
return result;
}
///
/// Creates a new that contains a transformation of 2d-vector by the specified .
///
/// Source .
/// The which contains rotation transformation.
/// Transformed as an output parameter.
public static void Transform(
ref Vector2 value,
ref Quaternion rotation,
out Vector4 result
) {
double xx = rotation.X + rotation.X;
double yy = rotation.Y + rotation.Y;
double zz = rotation.Z + rotation.Z;
double wxx = rotation.W * xx;
double wyy = rotation.W * yy;
double wzz = rotation.W * zz;
double xxx = rotation.X * xx;
double xyy = rotation.X * yy;
double xzz = rotation.X * zz;
double yyy = rotation.Y * yy;
double yzz = rotation.Y * zz;
double zzz = rotation.Z * zz;
result.X = (float) (
(double) value.X * (1.0 - yyy - zzz) +
(double) value.Y * (xyy - wzz)
);
result.Y = (float) (
(double) value.X * (xyy + wzz) +
(double) value.Y * (1.0 - xxx - zzz)
);
result.Z = (float) (
(double) value.X * (xzz - wyy) +
(double) value.Y * (yzz + wxx)
);
result.W = 1.0f;
}
///
/// Creates a new that contains a transformation of 3d-vector by the specified .
///
/// Source .
/// The which contains rotation transformation.
/// Transformed as an output parameter.
public static void Transform(
ref Vector3 value,
ref Quaternion rotation,
out Vector4 result
) {
double xx = rotation.X + rotation.X;
double yy = rotation.Y + rotation.Y;
double zz = rotation.Z + rotation.Z;
double wxx = rotation.W * xx;
double wyy = rotation.W * yy;
double wzz = rotation.W * zz;
double xxx = rotation.X * xx;
double xyy = rotation.X * yy;
double xzz = rotation.X * zz;
double yyy = rotation.Y * yy;
double yzz = rotation.Y * zz;
double zzz = rotation.Z * zz;
result.X = (float) (
(double) value.X * (1.0 - yyy - zzz) +
(double) value.Y * (xyy - wzz) +
(double) value.Z * (xzz + wyy)
);
result.Y = (float) (
(double) value.X * (xyy + wzz) +
(double) value.Y * (1.0 - xxx - zzz) +
(double) value.Z * (yzz - wxx)
);
result.Z = (float) (
(double) value.X * (xzz - wyy) +
(double) value.Y * (yzz + wxx) +
(double) value.Z * (1.0 - xxx - yyy)
);
result.W = 1.0f;
}
///
/// Creates a new that contains a transformation of 4d-vector by the specified .
///
/// Source .
/// The which contains rotation transformation.
/// Transformed as an output parameter.
public static void Transform(
ref Vector4 value,
ref Quaternion rotation,
out Vector4 result
) {
double xx = rotation.X + rotation.X;
double yy = rotation.Y + rotation.Y;
double zz = rotation.Z + rotation.Z;
double wxx = rotation.W * xx;
double wyy = rotation.W * yy;
double wzz = rotation.W * zz;
double xxx = rotation.X * xx;
double xyy = rotation.X * yy;
double xzz = rotation.X * zz;
double yyy = rotation.Y * yy;
double yzz = rotation.Y * zz;
double zzz = rotation.Z * zz;
result.X = (float) (
(double) value.X * (1.0 - yyy - zzz) +
(double) value.Y * (xyy - wzz) +
(double) value.Z * (xzz + wyy)
);
result.Y = (float) (
(double) value.X * (xyy + wzz) +
(double) value.Y * (1.0 - xxx - zzz) +
(double) value.Z * (yzz - wxx)
);
result.Z = (float) (
(double) value.X * (xzz - wyy) +
(double) value.Y * (yzz + wxx) +
(double) value.Z * (1.0 - xxx - yyy)
);
result.W = value.W;
}
///
/// Apply transformation on all vectors within array of by the specified and places the results in an another array.
///
/// Source array.
/// The which contains rotation transformation.
/// Destination array.
public static void Transform(
Vector4[] sourceArray,
ref Quaternion rotation,
Vector4[] destinationArray
) {
if (sourceArray == null)
{
throw new ArgumentException("sourceArray");
}
if (destinationArray == null)
{
throw new ArgumentException("destinationArray");
}
if (destinationArray.Length < sourceArray.Length)
{
throw new ArgumentException(
"destinationArray is too small to contain the result."
);
}
for (int i = 0; i < sourceArray.Length; i += 1)
{
Transform(
ref sourceArray[i],
ref rotation,
out destinationArray[i]
);
}
}
///
/// Apply transformation on vectors within array of by the specified and places the results in an another array.
///
/// Source array.
/// The starting index of transformation in the source array.
/// The which contains rotation transformation.
/// Destination array.
/// The starting index in the destination array, where the first should be written.
/// The number of vectors to be transformed.
public static void Transform(
Vector4[] sourceArray,
int sourceIndex,
ref Quaternion rotation,
Vector4[] destinationArray,
int destinationIndex,
int length
) {
if (sourceArray == null)
{
throw new ArgumentException("sourceArray");
}
if (destinationArray == null)
{
throw new ArgumentException("destinationArray");
}
if (destinationIndex + length > destinationArray.Length)
{
throw new ArgumentException(
"destinationArray is too small to contain the result."
);
}
if (sourceIndex + length > sourceArray.Length)
{
throw new ArgumentException(
"The combination of sourceIndex and length was greater than sourceArray.Length."
);
}
for (int i = 0; i < length; i += 1)
{
Transform(
ref sourceArray[i + sourceIndex],
ref rotation,
out destinationArray[i + destinationIndex]
);
}
}
#endregion
#region Public Static Operators
public static Vector4 operator -(Vector4 value)
{
return new Vector4(-value.X, -value.Y, -value.Z, -value.W);
}
public static bool operator ==(Vector4 value1, Vector4 value2)
{
return ( (MathHelper.WithinEpsilon(value1.W, value2.W)) &&
(MathHelper.WithinEpsilon(value1.X, value2.X)) &&
(MathHelper.WithinEpsilon(value1.Y, value2.Y)) &&
(MathHelper.WithinEpsilon(value1.Z, value2.Z)) );
}
public static bool operator !=(Vector4 value1, Vector4 value2)
{
return !(value1 == value2);
}
public static Vector4 operator +(Vector4 value1, Vector4 value2)
{
value1.W += value2.W;
value1.X += value2.X;
value1.Y += value2.Y;
value1.Z += value2.Z;
return value1;
}
public static Vector4 operator -(Vector4 value1, Vector4 value2)
{
value1.W -= value2.W;
value1.X -= value2.X;
value1.Y -= value2.Y;
value1.Z -= value2.Z;
return value1;
}
public static Vector4 operator *(Vector4 value1, Vector4 value2)
{
value1.W *= value2.W;
value1.X *= value2.X;
value1.Y *= value2.Y;
value1.Z *= value2.Z;
return value1;
}
public static Vector4 operator *(Vector4 value1, float scaleFactor)
{
value1.W *= scaleFactor;
value1.X *= scaleFactor;
value1.Y *= scaleFactor;
value1.Z *= scaleFactor;
return value1;
}
public static Vector4 operator *(float scaleFactor, Vector4 value1)
{
value1.W *= scaleFactor;
value1.X *= scaleFactor;
value1.Y *= scaleFactor;
value1.Z *= scaleFactor;
return value1;
}
public static Vector4 operator /(Vector4 value1, Vector4 value2)
{
value1.W /= value2.W;
value1.X /= value2.X;
value1.Y /= value2.Y;
value1.Z /= value2.Z;
return value1;
}
public static Vector4 operator /(Vector4 value1, float divider)
{
float factor = 1f / divider;
value1.W *= factor;
value1.X *= factor;
value1.Y *= factor;
value1.Z *= factor;
return value1;
}
#endregion
}
}